

Add VFO Memories
to your DDS Development Kit

By Bruce Hall, W8BH

The DDS kit by W8DIZ is a tinkerer’s delight. In my first project, I added a keypad. The whole

process is described at http://w8bh.net/avr/AddKeypadFull.pdf. The keypad is great for entering

frequencies directly, but it would be even better if we could have some memories. I wanted a

way to quickly change bands, and go directly to the qrp calling frequencies. The following

pages will describe how I added my VFO frequency memories. You can access the memories

with or without a keypad.

I thought it would be neat if I could turn the encoder shaft and scroll through a list of memories,

and then select the frequency I want by pressing the button. The encoder currently has only

one function: changing the frequency. Can we add more functions? There are plenty of

examples in consumer gear where a single input device has multiple uses.

To give the encoder multiple modes of operation, we need to create a variable ‘mode’. Then,

wherever we code for encoder action, check the mode variable and act according to the current

mode. For example, in normal mode we change the frequency, but in a second mode we scroll

through preset frequencies instead. We can create as many modes of operation as we want,

coding the encoder behavior to whatever the mode requires.

In the source code, handling encoder rotation is an integral part of the main program loop.

Changing modes and encoder behavior would mean a lot of changes to the existing code, and

would be hard to support if and when the source code is updated. For me, the easiest approach

was to keep the existing code intact, and create a new main program loop. Reverting to the

original code would only require commenting out a single program line:

menu: ;main program

rjmp W8BH ;!! go to new main program

In the beginning of the main program loop I add a single line that jumps to the new code,

including some additional initialization. With this line in place, the original program loop is

bypassed and never executed. Put a semicolon in front of the rjmp instruction above, and all of

my inserted code will be bypassed instead. Neat and simple!

http://w8bh.net/avr/AddKeypadFull.pdf

2 Adding VFO Memories

In the keypad article, I started from some simple routines, like blinking the LED, and built larger

and more complex routines in a step-wise fashion. In computer class this is called ‘bottom-up’

programming, and is often frowned upon. Personally, I prefer it: I learn better by starting small.

But when rewriting a main program loop, it makes more sense to think in a bigger, top-down

approach, and then fill in the details later. Doing so keeps our loop simpler to code and simpler

to read. What does the DDS program do? It checks for encoder action, then checks for button

action, and repeats forever. So my new encoder routine is really simple:

MAIN:

 rcall CheckEncoder ;check for encoder action

 rcall CheckButton ;check for button taps

 rcall CheckHold ;check for button holds

 rcall Keypad ;check for keypad action

 rjmp Main ;loop forever

The only things I added are checks for keypad and button-hold activity. This new routine works

for the original code, and for any additional functions we may assign to the encoder and/or

button. I added a button-hold as a way to change modes. Hold the button down, and we

change from normal mode to our new ‘scrolling presets’ mode. But how do we code for a

button-hold? In top-down thinking, we’ll make a place for it now and worry about the details

later.

Dealing with multiple modes

As I mentioned before, each mode will have an associated behavior. In mode 0, the original

mode, the encoder increases/decreases the frequency and the button press advances the

cursor. So our CheckEncoder routine will need to check the mode, and branch to the

appropriate routines. The pseudo-code for this routine looks something like this:

a. Bypass this routine if no encoder requests pending

b. If we’re in mode 0, do the original encoder routine

c. If we’re in mode 1, scroll through the presets

d. If we’re in modes 2+, create a space for that behavior

The actual code follows this form almost exactly

CHECKENCODER:

 tst encoder ;any encoder requests?

 breq ce2 ;no, so quit

 cpi mode,0 ;are we in normal mode (0)?

 brne ce1 ;no, skip

 rcall EncoderMode0 ;yes, handle it

ce1: cpi mode,1 ;are we in mode 1 = presets?

 brne ce2 ;no, skip

 rcall EncoderMode1 ;yes, handle it

ce2: ret

3 Adding VFO Memories

Each line in the pseudo-code equates to 3 lines of code - the cpi, brne, and rcall instructions.

Future modes can be added at the end of the routine. The CheckButton and CheckHold

routines follow the exact same sequence.

Mode 0 Routines

In mode 0, the encoder behaves normally, and the code is an almost exact copy of the original

source code. In EncodeMode0 routine we handle encoder behavior, and in ButtonMode0 we

handle the button behavior. I won’t go into all the details, but I have added comments in the

code. A new routine, HoldMode0, is called when the button is held down. I wanted a button-

hold to change the modes, so this is the place to handle it:

HOLDMODE0:

; Called when button has been held down for about 1.6 seconds.

; In mode 0, action should be to invoke mode1 = scrolling freq. presets

 ldi mode,1

 rcall ChangeMode ;go to scrolling preset mode

 rcall CurrentPreset ;return to most-recent preset

 ret

There isn’t much to it. In top-down approach, we list what we want to happen and code it later.

The call to CurrentPreset ensures that any time we change modes that we return to the last-

used preset. For example, I might choose the 7.030 MHz preset, then move up & down the

band a bit. When I return to presets, this call brings me back to 7.030.

Mode 1 Routines

It’s time to make our encoder do something different. In mode1, the encoder will scroll through

our frequency presets. Here is the code:

ENCODERMODE1:

 tst encoder ;which way did encoder turn?

 brmi e11

 rcall CyclePresetUp ;CW = increase freq

 rjmp e12

e11: rcall CyclePresetDown ;CCW = decrease freq

e12: clr encoder ;ignore any more requests

 ret

We check the encoder variable to see which way the encoder turned. Two ‘clicks’ of the

encoder to the left (CCW) results in an encoder value of -2, and two ‘clicks’ to the right

4 Adding VFO Memories

(clockwise) result in a +2. The branch instruction brmi ‘branch on minus’ distinguishes the

positive from negative encoder values. Then we call the main actions, CyclePresetUp or

CyclePresetDown. After taking the action we are done, so the variable is cleared.

When we are scrolling, what should a button press do? I decided that it should cancel the

scrolling and return us to normal mode. You may decide to do something else. The code for

this is ButtonMode1.

Button Hold routines

I’ve run out of top-down programming. At some point we have to code what our routines say

they are going to do! It is time to start the trickier stuff.

We need a way to determine if the button is being held down longer than a simple press-and-

release. This means that we need a way of measuring the amount of time that the button is in

the pushed-down state. There are several ways to do this, but using a hardware timer seemed

like a good choice. The ATmega88 has three built-in timers. The source code already uses

one of these timers. Although it’s possible to use the same timer for more than one function, I

decided to use another, unused timer instead.

The three timers are timer0, timer1, and timer2. Both timer0 and timer2 are 8-bit timers, which

means that they can measure time in 256 increments. Timer1 is 16-bit, and can count up to

65535 time-increments. Timer1 is also more complex and versatile. Since 8-bit resolution was

good enough for a button-hold, and timer0 was already in use, I chose timer2.

At a clock rate of 20.48 MHz, how can a count of 256 possibly be enough time to measure a

second or more? The answer is to prescale the clock to a slower and more useful frequency. I

divided the clock by 1024, which gives a period of 1024/20.48 = 50 microseconds. Notice that

Diz chose the crystal frequency to give us a nice, even number. Now, every cycle of 256 is

completed in 245*50 = 12.8 milliseconds, a more reasonable unit of time. Timer2 is

programmed almost exactly like Timer0, except for a longer cycle.

I configured timer2 to interrupt the program every 13 millisecond cycle, so that we can check the

status of the button. If the button is down, increment a counter. If the button is released, restart

the counter. Here is the code of our new interrupt routine:

;***

;* W8BH - Timer 2 Overflow Interrupt Handler

;***

; This handler is called every 12.8 ms @ 20.48MHz clock

; Increments HOLD counter (max 128) when button held

; Resets HOLD counter if button released

OVF2:

 push temp1

 in temp1,SREG ;save status register

 push temp1

5 Adding VFO Memories

 tst hold ;counter at max yet?

 brmi ov1 ;dont count above maxcount (128)

 sbic pinD,PD3

 clr hold ;if button is up, then clear

 sbis pinD,PD3

 inc hold ;if button is down, then count

ov1: pop temp1

 out SREG,temp1 ;restore status register

 pop temp1

 reti

To enable the interrupt routine, we need to add its address to the interrupt table:

.org OVF2addr

 jmp OVF2 ; Timer/Counter2 overflow

And we need to configure the interrupt’s control registers:

 ldi temp1, $07 ;set timer2 prescaler to clk/1024

 sts TCCR2B,temp1

 ldi temp1, $01 ;enable TIMER2 overflow interrupt

 sts TIMSK2,temp1

Now we are able to measure button-hold times in terms of seconds. When the hold counter

reaches 128, we’ve been holding the button down for 128*12.8 = 1.6 seconds. I thought this

was a reasonable hold time. You can easily decrease it by increasing the timer2 variable from 0

to a higher value at the start of each new cycle.

The Push/In/Push sequence at the start of the routine is needed to preserve the status register.

Why? Because our interrupt routine can be called at any time during program execution, and

we don’t want our interrupt routine to unexpectedly change the register in the middle of some

routine that uses it.

I’ve assigned the hold counter to variable R0. Variables below R16 cannot use certain common

instructions, and therefore are somewhat less useful. R0 seemed like a good choice, since we

do not need HOLD to do much more than count. You could have used an upper register

instead, but it is better to save them for more complex operations. A third option would be to

use an SRAM memory location. It is the programmer’s choice.

We check the status of our button pin using the sbis/sbic instructions, and update our hold

counter accordingly. Notice that once we reach a count of 128, the counter is ‘stuck’ there,

waiting for our software to recognize the hold condition. Viola! We have button-hold. We can

now code the button hold routine that we’ve put off.

CHECKHOLD:

 tst hold ;is hold a positive/zero value?

 brpl ch2 ;yes, not a hold yet

 clr hold ;its a hold. Reset counter.

6 Adding VFO Memories

 cpi mode,0 ;normal mode (0)?

 brne ch1 ;no, skip

 rcall HoldMode0 ;yes, handle button

ch1: cpi mode,1 ;presets mode (1)?

 brne ch2 ;no, skip

 rcall HoldMode1 ;yes, handle button

ch2: ret

Notice the use of the branch-if-plus brpl instruction to check for the hold. I set the hold counter

to max out at 128. Any count up to 127 is positive, but in signed-binary the next-incremented

value is -128. I used this technique because the hold register (R0) cannot use the compare-

immediate instruction. Another method would be to move the value into a temporary register,

like temp1, and then do the compare. For example: mov temp1, hold; cpi temp1,150; brlo ch2.

Memory routines

I entered my memory presets into a table at the end of the source code like this:

.EQU NumPresets = 9 ;Enter # of presets here

presets: ;One line for each preset freq

.db 0,3,5,6,0,0,0,0 ;80M qrp calling = 3.560 MHz

.db 0,7,0,3,0,0,0,0 ;40M qrp calling = 7.030 MHz

.db 1,0,0,0,0,0,0,0 ;--- --- --- WWV = 10.000 MHz

.db 1,0,1,0,6,0,0,0 ;30M qrp calling = 10.106 MHz

.db 1,4,0,6,0,0,0,0 ;20M qrp calling = 14.060 MHz

.db 1,8,0,9,6,0,0,0 ;17M qrp calling = 18.096 MHz

.db 2,1,0,6,0,0,0,0 ;15M qrp calling = 21.060 MHz

.db 2,4,9,0,6,0,0,0 ;12M qrp calling = 24.906 MHz

.db 2,8,0,6,0,0,0,0 ;10M qrp calling = 28.060 MHz

Each memory entry is 8 bytes, and each byte corresponds to a digit of the desired frequency.

Now we need a way of converting these digits into the actual frequency. To do so requires

knowing something about the DDS chip. To get a desired frequency output, you cannot just tell

it the frequency you want; you must send it a 28-bit value which specifies the frequency in units

of 100 MHz/(2^^28) = 0.373 Hz. For example, to get 10 MHz out, you need to supply a value of

26,843,545! In addition, there need to be a few added control bits. I found it complicated and

confusing, honestly. Hocus pocus. And so, for a lack of a better term, I call this required value

our ‘magic number’. Sorry if this seems immature, but it made it easy for me to remember.

Send the magic number to the DDS chip, and you get your frequency output.

The tricky part, of course, is being able to generate the magic number. The original source

code handles it in a really slick way: the magic numbers for 1 Hz, 10Hz, 100Hz, …, 10 MHz are

all stored in a table. If the encoder moves the displayed frequency up 100 Hz, then it also grabs

the 100 Hz value and adds it to our magic number. No need for complicated formulas.

After studying the code, I realized that it would not be hard to generate the magic number for

any frequency. All we need to do is look at each digit in the desired frequency, and add up the

7 Adding VFO Memories

corresponding magic components. For example, the magic number for 20 MHz would be twice

the value for 10 MHz. The table value for 10 MHz is $33333333, so the 20 MHz magic number

is $66666666. To get 11 MHz, add the 10 MHz ($33333333) and 1 MHz ($051EB852) values to

get the magic number of $3851EB85.

BuildMagic:

 push StepRate ;save StepRate

 ldi XH,high(LCDrcve0) ;point to LCD digits

 ldi XL,low(LCDrcve0) ;16bit pointer

 ldi StepRate,7 ;Start with 10MHz position

bm1: ld temp3,X+ ;get next LCD digit

 tst temp3 ;is it zero?

 breq bm3 ;yes, so go to next digit

bm2: rcall AddMagic ;no, so add magic component

 dec temp3 ;all done with this component

 brne bm2 ;no, add some more

bm3: dec StepRate ;all done with freq. positions?

 brne bm1 ;no, go to next (lowest) position

 pop StepRate ;restore StepRate

 ret

The routine above looks at the current frequency digits, which are pointed to by LCDrcve0. At

each digit, starting at the 10 MHz position, add the corresponding magic number. The digit is

loaded into temp3, which is used to count the number of magic units added. For example, if the

frequency is 25 MHz and we are on the first digit, then ‘2’ gets loaded into temp3 and we will

add the 10 MHz component ($33333333) twice. When this digit is done (at bm3), we go to the

next digit ‘5’ and do the same thing. And so on, until all of the digits in the displayed frequency

are done.

I added a small routine, ShowMagic, to verify that BuildMagic worked. It displays the magic

number on the top line of the LCD. I kept the code in case I needed it later.

Once we have the magic number, a call to FREQ_OUT will update the DDS with the

corresponding frequency. All we need is a way to move a memory frequency to the display

buffer. It is a simple copy operation. But since the source and destination are in memory

rather than registers, we need to point to them with 16-bit pointers. Here is the code:

LoadPreset:

 ldi ZH,high(freqLCD*2) ;point to the preset table (-8 bytes)

 ldi ZL,low(freqLCD*2) ;16bit pointer

lp1: adiw ZL,8 ;point to next frequency preset

 dec temp1 ;get to the right preset yet?

 brne lp1 ;no, keep looking

 ldi YH,high(LCDrcve0) ;yes, point to LCD digits

 ldi YL,low(LCDrcve0) ;16bit pointer

 ldi temp2,8 ;there are 8 frequency digits

lp2: lpm temp1,Z+ ;get an LCD digit from FLASH mem

 st Y+,temp1 ;and put into LCD display buffer

8 Adding VFO Memories

 dec temp2 ;all digits done?

 brne lp2 ;not yet

 ret

The memory values are stored at the end of the program. And because a quirk in the AVR

assembler, which counts program lines differently than data, we must multiply the source

address by 2. We also need to use the lpm ‘load from program memory’ instruction instead of

the regular load instruction.

Now, with all of these pieces in place, using a VFO memory is easy: just put the memory

number into temp1 and call the following routine:

GetPreset:

 rcall LoadPreset ;get the preset in LCD buffer

 ldi StepRate,3 ;put cursor on KHz value

 rcall ShowFreq ;show preset on LCD

 rcall ZeroMagic ;clear out old magic number

 rcall BuildMagic ;build new one based on current freq

 rcall Freq_Out ;send new magic to DDS

 ;rcall ShowMagic ;show magic# on line 1 (debugging)

 ret

Bits and Pieces

There isn’t much more to it. The new encoder behavior is moving up or down the list of

memories, so we can just cycle through them with each encoder update:

CyclePresetUp:

 ldi ZH,high(prset) ;point to current preset

 ldi ZL,low(prset) ;16bit pointer

 ld temp1,Z ;get current preset

 cpi temp1,NumPresets ;end of list?

 brne cp1 ;no, so can save

 ldi temp1,0 ;yes, cycle back to start

cp1: inc temp1

 st Z,temp1 ;save preset

 rcall GetPreset ;load & display preset

 ret

The key instruction is the increment instruction at cp1. The routine also checks to see if we’ve

reached the top of the list, and to cycle back to zero if we’re at the top. Notice that I’ve put the

preset variable in SRAM. I could have used a lower register instead. Either way is acceptable.

I used SRAM since this variable is only used for storing a value. The upper registers should

probably be saved for variables that need more complex operations.

9 Adding VFO Memories

Source Code

.cseg

.org $000

 jmp RESET

.org INT0addr

 jmp EXT_INT0 ; External Interrupt Request 0

.org INT1addr

 jmp EXT_INT1 ; External Interrupt Request 1

.org OVF0addr

 jmp OVF0 ; Timer/Counter0 Overflow

.org OVF2addr

 jmp OVF2 ; Timer/Counter2 overflow

.org INT_VECTORS_SIZE

menu: ;main program

rjmp W8BH ;!! go to new main program

;***

;* W8BH - INITIALIZATION CODE

;***

W8BH:

 ldi temp1,$03 ;binary 0000.0011

 out DDRB,temp1 ;set PB0,1 as output

 ldi temp1,$3C ;binary 0011.1100

 out PORTB,temp1 ;set pullups on PB2-5

 ldi temp1,$A3 ;b1010.0011 (add bit PD7)

 out DDRD,temp1 ;set PD0,1,5,7 outputs

 rcall InitPreset ;frequency presets

 ldi mode,0 ;start mode0 = normal operation

 ldi temp1, $07 ;set timer2 prescaler to clk/1024

 sts TCCR2B,temp1

 ldi temp1, $01 ;enable TIMER2 overflow interrupt

 sts TIMSK2,temp1

;***

;* W8BH - REVISED MAIN PROGRAM LOOP

;***

MAIN:

 rcall CheckEncoder ;check for encoder action

 rcall CheckButton ;check for button taps

 rcall CheckHold ;check for button holds

 rcall Keypad ;check for keypad action

 rjmp Main ;loop forever

10 Adding VFO Memories

CHECKENCODER:

 tst encoder ;any encoder requests?

 breq ce2 ;no, so quit

 cpi mode,0 ;are we in normal mode (0)?

 brne ce1 ;no, skip

 rcall EncoderMode0 ;yes, handle it

ce1: cpi mode,1 ;are we in mode 1 = presets?

 brne ce2 ;no, skip

 rcall EncoderMode1 ;yes, handle it

ce2: ret

CHECKBUTTON:

 tst press ;any button requests?

 breq cb2 ;no, so quit

 cpi mode,0 ;normal mode (0)?

 brne cb1 ;no, skip

 rcall ButtonMode0 ;yes, handle button

cb1: cpi mode,1 ;presets mode (1)?

 brne cb2 ;no, skip

 rcall ButtonMode1 ;yes, handle button

cb2: ret

CHECKHOLD:

 tst hold ;is hold a positive/zero value?

 brpl ch2 ;yes, not a hold yet

 clr hold ;its a hold. Reset counter.

 cpi mode,0 ;normal mode (0)?

 brne ch1 ;no, skip

 rcall HoldMode0 ;yes, handle button

ch1: cpi mode,1 ;presets mode (1)?

 brne ch2 ;no, skip

 rcall HoldMode1 ;yes, handle button

ch2: ret

;***

;* W8BH - MODE 0 (NORMAL MODE) ROUTINES

;***

ENCODERMODE0:

; This code taken from original program loop.

; Called when there is a non-zero value for encoder variable.

; Negative encoder values = encoder has turned CCW

; Positive encoder values = encoder has turned CW

; In mode 0, encoder should increase/decrease the DDS freq

 tst encoder

 brpl e02 ;which way did encoder rotate?

 inc encoder ;remove 1 negative rotation

 rcall DecFreq0 ;reduce displayed frequency

 cpi temp1,55 ;55 = all OK

 brne e01

11 Adding VFO Memories

 rcall IncFreq0 ;correct freq. underflow

 rjmp e05

e01: rcall DecFreq9 ;reduce magic number

 rjmp e04

e02: dec encoder ;remove 1 positive rotation

 rcall IncFreq0 ;increase displayed frequency

 cpi temp1,55 ;55 = all OK

 brne e03

 rcall DecFreq0 ;correct freq. overflow

 rjmp e05

e03: rcall IncFreq9 ;increase magic number

e04: rcall FREQ_OUT ;update the DDS

 rcall ShowFreq ;display new frequency

e05: rcall QuickBlink

 ret

BUTTONMODE0:

; This code taken from original program loop.

; Called when there is a non-zero value for press variable.

; Non-zero value = number of times button has been pressed

; In mode 0, button should advance cursor to the right

 tst encoder ;check for pending encoder requests

 brne b01 ;dont advance cursor until encoder done

 dec press ;reduce button press count

 dec StepRate ;advance cursor position variable

 brpl b01 ;position >= 0 (Hz position)

 ldi StepRate,7 ;no, so go back to 10MHz position

b01: rcall ShowCursor

 rcall QuickBlink ;flash the LED

 ret

HOLDMODE0:

; Called when button has been held down for about 1.6 seconds.

; In mode 0, action should be to invoke mode1 = scrolling freq. presets

 ldi mode,1

 rcall ChangeMode ;go to scrolling preset mode

 rcall CurrentPreset ;return to most-recent preset

 ret

;***

;* W8BH - MODE 1 (SCROLL FREQUENCY PRESET) ROUTINES

;***

ENCODERMODE1:

 tst encoder ;which way did encoder turn?

 brmi e11

 rcall CyclePresetUp ;CW = increase freq

 rjmp e12

12 Adding VFO Memories

e11: rcall CyclePresetDown ;CCW = decrease freq

e12: clr encoder ;ignore any more requests

 ret

BUTTONMODE1:

 clr press ;ignore any more requests

 ldi mode,0

 rcall ChangeMode ;go to mode 0 = normal op.

 ret

HOLDMODE1:

 ret ;dont do anything special

CHANGEMODE:

; call this routine when mode changes

; only action is to change the message on Line 1

 cpi mode,0 ;mode 0?

 brne cm1 ;no, skip

 rcall DisplayMsg1 ;yes, show normal message

cm1: cpi mode,1 ;mode 1?

 brne cm2 ;no, skip

 rcall DisplayMsg2 ;yes, show 'Scroll Presets'

cm2: ret

QUICKBLINK:

 cbi PORTC,LED ;turn LED on

 ldi delay,15 ;keep on 20 ms

 rcall wait

 sbi PORTC,LED ;turn LED off

 ret

;***

;* W8BH - KEYPAD ROUTINES

;*

;* KEYPAD CONNECTIONS (7 wires)

;* Row1 to PB5, Row2 to BP4,

;* Row3 to PB3, Row4 to PB2,

;* Col0 to PD7, Col1 to PB1, Col2 to PB0

;*

;* FUNCTIONS

;* # = cursor right

;* * = frequency presets.

;***

KEYPAD:

 tst encoder ;is encoder busy?

 brne kp0 ;wait for encoder to finish

 cbi PORTD,PD7 ;take column1 low

 ldi temp1,2 ;col1 value is 2

 rcall ScanRows ;see if a row went low

13 Adding VFO Memories

 sbi PORTD,PD7 ;restore column1 high

 cbi PORTB,PB0 ;take column2 low

 ldi temp1,1 ;col2 value is 1

 rcall ScanRows ;see if a row went low

 sbi PORTB,PB0 ;restore col2 high

 cbi PORTB,PB1 ;take column3 low

 ldi temp1,0 ;col3 value is 0

 rcall ScanRows ;see if a row went low

 sbi PORTB,PB1 ;restore column3 high

kp0: ret

SCANROWS:

 clc ;clear carry

 sbis pinB,PB5 ;is row1 low?

 subi temp1,3 ;yes, subtract 3

 sbis pinB,PB4 ;is row2 low?

 subi temp1,6 ;yes, subtract 6

 sbis pinB,PB3 ;is row3 low?

 subi temp1,9 ;yes, subtract 9

 sbis pinB,PB2 ;is row4 low?

 subi temp1,12 ;yes, subtract 12

 brcc kp1 ;no carry = no keypress

 neg temp1 ;negate answer

 rcall PadCommand ;do something

kp1: ret

PADCOMMAND:

 cpi temp1,11 ;special case: is it 0?

 brne kp2 ;no, continue

 ldi temp1,0 ;yes, replace with real zero

kp2: cpi temp1,12 ;special case: "#" command?

 brne kp3 ;no, try next command

 inc press ;emulate button press = cursor right

 ldi temp1,1 ;1 blink for switch debouncing

 rjmp kp6 ;done with '#'

kp3: cpi temp1,10 ;special case:"*" command

 brne kp4 ;no, try next command

 rcall CyclePresetUp ;yes, get next preset

 rjmp kp6 ;done with '*'

kp4: mov temp2,StepRate ;no, get current cursor position

 ldi ZH,high(rcve0) ;point to frequency value in memory

 ldi ZL,low(rcve0) ;16 bits, so need two instructions

kp5: dec ZL ;advance through frequency digits

 dec temp2 ;and advance through cursor positions

 brpl kp5 ;until we get to current digit

 ld temp3,Z ;load value at cursor

 sub temp1,temp3 ;subtract from keypad digit

 mov encoder,temp1 ;set up difference for encoder routines.

14 Adding VFO Memories

 inc press ;advance cursor position

kp6: ldi delay,150 ;simple key debouncer

 rcall wait ;give the LED a rest!

 ret

;***

;* W8BH - FREQUENCY PRESET ROUTINES

;***

ZeroMagic:

 ldi ZH,high(rcve0) ;point to magic#

 ldi ZL,low(rcve0)

 ldi temp1,0

 st Z+,temp1 ;zero first byte (MSB)

 st Z+,temp1 ;zero second byte

 st Z+,temp1 ;zero third byte

 st Z+,temp1 ;zero fourth byte (LSB)

 ret

ShowMagic:

 ldi ZH,high(rcve0) ;point to magic number

 ldi ZL,low(rcve0) ;2 byte pointer

 ldi temp3,4 ;counter for 4 byte display

 ldi temp1,$80 ;display on line1

 rcall LCDCMD

sh1: ld temp1,Z+ ;point to byte to display

 rcall SHOWHEX ;display first nibble

 ldi temp1,' ' ;add a space

 rcall LCDCHR ;display the space

 dec temp3 ;all 4 bytes displayed yet?

 brne sh1 ;no, so do the rest

 ret

AddMagic:

; adds one component to magic according to StepRate

; 0 = Hz rate, 3=Khz rate, 6=MHz rate, 7=10MHz rate

 Rcall IncFreq9 ;already coded!

 ret

BuildMagic:

 push StepRate ;save StepRate

 ldi XH,high(LCDrcve0) ;point to LCD digits

 ldi XL,low(LCDrcve0) ;16bit pointer

 ldi StepRate,7 ;Start with 10MHz position

bm1: ld temp3,X+ ;get next LCD digit

 tst temp3 ;is it zero?

 breq bm3 ;yes, so go to next digit

bm2: rcall AddMagic ;no, so add magic component

 dec temp3 ;all done with this component

 brne bm2 ;no, add some more

bm3: dec StepRate ;all done with freq. positions?

 brne bm1 ;no, go to next (lowest) position

 pop StepRate ;restore StepRate

15 Adding VFO Memories

 ret

LoadPreset:

 ldi ZH,high(freqLCD*2) ;point to the preset table (-8 bytes)

 ldi ZL,low(freqLCD*2) ;16bit pointer

lp1: adiw ZL,8 ;point to next frequency preset

 dec temp1 ;get to the right preset yet?

 brne lp1 ;no, keep looking

 ldi YH,high(LCDrcve0) ;yes, point to LCD digits

 ldi YL,low(LCDrcve0) ;16bit pointer

 ldi temp2,8 ;there are 8 frequency digits

lp2: lpm temp1,Z+ ;get an LCD digit from FLASH mem

 st Y+,temp1 ;and put into LCD display buffer

 dec temp2 ;all digits done?

 brne lp2 ;not yet

 ret

GetPreset:

 rcall LoadPreset ;get the preset in LCD buffer

 ldi StepRate,3 ;put cursor on KHz value

 rcall ShowFreq ;show preset on LCD

 rcall ZeroMagic ;clear out old magic number

 rcall BuildMagic ;build new one based on current freq

 rcall Freq_Out ;send new magic to DDS

 ;rcall ShowMagic ;show magic# on line 1 (debugging)

 ret

InitPreset:

 ldi zh,high(prset) ;point to freq. preset counter

 ldi ZL,low(prset)

 ldi temp1,1 ;start with first preset

 st Z,temp1 ;initialize counter

 ret

CurrentPreset:

 ldi ZH,high(prset) ;point to current preset

 ldi ZL,low(prset) ;16bit pointer

 ld temp1,Z ;get current preset

 rcall GetPreset ;load & display preset

 ret

CyclePresetUp:

 ldi ZH,high(prset) ;point to current preset

 ldi ZL,low(prset) ;16bit pointer

 ld temp1,Z ;get current preset

 cpi temp1,NumPresets ;end of list?

 brne cp1 ;no, so can save

 ldi temp1,0 ;yes, cycle back to start

cp1: inc temp1

 st Z,temp1 ;save preset

 rcall GetPreset ;load & display preset

 ret

CyclePresetDown:

 ldi ZH,high(prset) ;point to current preset

16 Adding VFO Memories

 ldi ZL,low(prset) ;16bit pointer

 ld temp1,Z ;get current preset

 dec temp1 ;point to prior preset

 brne cd1 ;not zero = OK

;comment out one of the next two lines, depending on action you want

 ldi temp1,1 ;stop at bottom of list

; ldi temp1,NumPresets ;cycle back to top of list

cd1: st Z,temp1 ;save preset

 rcall GetPreset ;load & display preset

 ret

;***

;* W8BH - Timer 2 Overflow Interrupt Handler

;***

; This handler is called every 12.8 ms @ 20.48MHz clock

; Increments HOLD counter (max 128) when button held

; Resets HOLD counter if button released

OVF2:

 push temp1

 in temp1,SREG ;save status register

 push temp1

 tst hold ;counter at max yet?

 brmi ov1 ;dont count above maxcount (128)

 sbic pinD,PD3

 clr hold ;if button is up, then clear

 sbis pinD,PD3

 inc hold ;if button is down, then count

ov1: pop temp1

 out SREG,temp1 ;restore status register

 pop temp1

 reti

;***

;* W8BH - Message Display routines

;***

DISPLAYMSG1:

 ldi ZH,high(2*msg1)

 ldi ZL,low(2*msg1)

 rcall DisplayMsg

 ret

DISPLAYMSG2:

 ldi ZH,high(2*msg2)

 ldi ZL,low(2*msg2)

 rcall DisplayMsg

 ret

DISPLAYMSG:

; displays a null-terminated message on line 1

; call with pointer to message in Z

17 Adding VFO Memories

 ldi temp1,$80 ;use line 1

 rcall LCDCMD

 rcall DISPLAY_LINE ;display the message

 ldi StepRate,3 ;put cursor at KHz posn

 rcall ShowCursor

 ret

;***

;* W8BH - END OF INSERTED CODE

;***

FreqLCD: .db 1,0,0,0,0,0,0,0 ;LCD for 10,000,000 Hz

;***

;*

;* USER-ADDED FREQUENCY PRESETS

;*

;***

.EQU NumPresets = 9 ;Enter # of presets here

presets: ;One line for each preset freq

.db 0,3,5,6,0,0,0,0 ;80M qrp calling = 3.560 MHz

.db 0,7,0,3,0,0,0,0 ;40M qrp calling = 7.030 MHz

.db 1,0,0,0,0,0,0,0 ;--- --- --- WWV = 10.000 MHz

.db 1,0,1,0,6,0,0,0 ;30M qrp calling = 10.106 MHz

.db 1,4,0,6,0,0,0,0 ;20M qrp calling = 14.060 MHz

.db 1,8,0,9,6,0,0,0 ;17M qrp calling = 18.096 MHz

.db 2,1,0,6,0,0,0,0 ;15M qrp calling = 21.060 MHz

.db 2,4,9,0,6,0,0,0 ;12M qrp calling = 24.906 MHz

.db 2,8,0,6,0,0,0,0 ;10M qrp calling = 28.060 MHz

; 1234567890123456

msg1:

.db "W8BH - Hold 'em ",0,0

msg2:

.db "* Scroll Presets",0,0

