

Using EEPROM

in your DDS Development Kit

By Bruce Hall, W8BH

This article will describe how to store and retrieve data using the EEPROM in your DDS

Development kit. I will upgrade the VFO memory project with EEPROM, enabling frequency

memories to be created and stored without programming.

EEPROM stands for Electrically Erasable and Programmable Read Only Memory. It is a

section of the ATmega88 microcontroller which is used for storing small amounts of data. Up to

512 bytes of data can be stored, which remain on the chip until erased. In today‟s gigabyte

word, half a kilobyte does not sound like much, but it is still very useful in our DDS kit.

In my VFO memory project, described at http://w8bh.net/avr/AddMemories.pdf, I created a list of

frequency presets. You can scroll through them with the encoder, allowing quick band changes.

Unfortunately, once you compile your code, you are stuck with whatever frequencies you

programmed. There is no way to change presets „in the field‟.

EEPROM gives us a great way to save VFO memories and other program settings. EEPROM

allow us to change these settings without recompiling, and untethers our DDS kit from the

programming cable.

I got excited about using EEPROM and quickly searched the internet for good programming

examples. I found plenty of C code examples, mostly written for the Arduino, that show how to

use EEPROM. But there were very few assembly language examples. I hope that some of you

find my example helpful in your own designs.

Reading and Writing EEPROM

Reading and writing the EEPROM is more complicated that reading and writing data from other

memory locations. It is almost like the EEPROM is on another chip. Each data operation

involves setting 4 different registers: the address registers (high and low), the data register, and

the control register. These registers are in the chip‟s I/O space, meaning that they are

accessed with the IN and OUT instructions. The actual data transfer is accomplished by setting

individual bits in the control register.

http://w8bh.net/avr/AddMemories.pdf

2 Using EEPROM

Here is the code for reading a byte from EEPROM:

ReadEE:

 sbic EECR,EEPE ;busy writing EEPROM?

 rjmp ReadEE ;yes, so wait

 out EEARH,YH ;set up address reg.

 out EEARL,YL

 sbi EECR,EERE ;strobe the read bit

 in temp1,EEDR ;get the data

 ret

The first thing to do is make sure the EEPROM is not busy writing data. Reading EEPROM is

fast, and takes only a few microcontroller cycles, but writing EEPROM is much slower. On

average, it takes 3.4 milliseconds to write a byte to EEPROM. The first two lines check the

EEPE (EE programming enable) bit in the control register to see if a write operation is in

progress. It loops here until the write operation, if any, is completed.

Next, we set up the EEPROM address registers, high and low, with the address that we want to

write to. In my code I am using the Y register combination, which is registers R28 and R29.

You may use any two registers that you like.

Once we know it is OK to read and the address is loaded, it is time to request the byte. The EE

read is triggered by setting the read enable bit (EERE) in the control register with the SBI

instruction. The byte is transferred from EEPROM into the EEDR data register, which is then

transferred to temp1 (or any other register) by the IN instruction.

It took me a while to get used to seeing all of those EE‟s. Mentally ignore them, and the code

looks a lot simpler. The write operation is very similar:

WriteEE:

 sbic EECR,EEPE ;busy writing EEPROM?

 rjmp WriteEE ;yes, so wait

 out EEARH,YH ;set up address reg.

 out EEARL,YL

 out EEDR,temp1 ;put data in data reg.

 cli ;dont interrupt the write

 sbi EECR,EEMPE ;master write enable

 sbi EECR,EEPE ;strobe the write bit

 sei ;interrupts OK now

 ret

The first four lines are the same. We wait until any pending write operation is completed, and

then set up our address. Next we write our data, in register temp1, to the EEPROM data

register. Our EEPROM data and address registers are now ready, but we have a couple more

tasks before we can write. Writing is a two-step process: first, we prepare for the write by

setting the Master Programming Enable (EEMPE) bit; then, we request the write by setting the

Programming Enable (EEPE) bit. These two operations must happen sequentially and without

interruption, so interrupts are first disabled by CLI and then re-enabled by SEI.

After finishing the VFO memory project, I thought about what would happen after I installed my

VFO. I could use the memories that I had originally programmed, but there was no easy way to

3 Using EEPROM

add or change them. I would have to open the radio, reattach the programming header,

remember how to use AVR studio (or whatever I program I used), find my source code, edit it,

reassemble, and then burn the new code into my ATmega88 chip. This wouldn‟t be much of a

hassle if it happened next week, or maybe even next month. But what if I wanted to do it next

year? Ugh. I‟d probably just make do with the original presets. With EEPROM we have a way

of saving NEW information on our chip, without go through all of these steps. I decided it was

time to upgrade the project, adding EEPROM routines as a way of saving and retrieving

frequency settings.

First, a little planning is in order. The EEPROM is 512 bytes in size. Is this enough space for

what we want? Each frequency preset, without any space-saving measures, takes 8 bytes. If

we use EEPROM for presets only, we can store up to 512/8 = 64 memory presets. For me this

is more than enough. I decided that I would use only the first half of the available memory,

which is 256 bytes. Of this half, I would save 32 bytes for non-preset data, and have room for

28 presets. You can divide your EEPROM space however you want. My plan gives me the

space that I need now and leaves plenty for future expansion.

After writing routines for loading and saving individual bytes, it seems natural to create routines

for loading and saving memory presets. We need to move 8 bytes at a time, so here is a

routine for moving 8 bytes:

Read8E: ;read 8 bytes from EE

 ldi temp2,8 ;counter=8

r81: rcall ReadEE ;get byte from EE

 st Z+,temp1 ;move byte to destination

 adiw Y,1 ;go to next EE addr

 dec temp2

 brne r81

 ret

The ReadEE routine used Y as the EEPROM address pointer, so I used Z as the destination

(SRAM) pointer. It is a simple loop, counting out 8 bytes and incrementing the pointers as we

go. Incrementing Z is done using the ST Z+ instruction. We are not loading memory from Y,

however, so we cannot use a Y auto-increment instruction. Instead, I used one of the few 16-bit

instructions, ADIW, to add one to the current Y value. The Write8E routine is almost exactly the

same, calling WriteEE instead of ReadEE.

We need to move the presets between EEPROM and our frequency buffer, which is located at

LDCrcve0. According my EEPROM memory plan above, I saved the first 32 bytes for future

use, and then stored each 8 byte preset sequentially, #00 to #27. The EEPROM address for a

given preset should therefore be 8*(preset #) + 32. Here is the code for reading a frequency

preset from EEPROM:

LoadEEMem:

; specify the preset# in temp1

; will return the EE memory into LCDrcve0

 clr YH

 ldi YL,32 ;start of presets

 ldi ZH,high(LCDrcve0)

4 Using EEPROM

 ldi ZL,low(LCDrcve0)

ge0: cpi temp1,0

 breq ge1

 adiw Y,8

 dec temp1

 brne ge0

ge1: rcall Read8E

 ret

Starting at ge0, a simple loop counts the number of presets, adding 8 to the EEPROM memory

pointer for each preset. By the time this loop is done, we‟ve added 8*preset# to the address.

We started counting at 32, so the pointer is at 8*preset+32. You can use the hardware multiply

instruction instead of looping, if you prefer. With Y and Z pointing to the correct locations, all

that remains is to read the 8 bytes with Read8E. The code to write is almost exactly the same,

calling Write8E instead of Read8E.

Saving ‘Factory Defaults’ to EEPROM

The VFO memory code is modified to call LoadEEMem instead of the original LoadPreset

routine. But initially there is nothing in the EEPROM to read. We could start with a blank

EEPROM and store each frequency manually, but it would be more convenient to have the

EEPROM load itself with some „factory‟ default frequencies the first time it is used.

How can we determine if the EEPROM has ever been programmed? One method is to check a

specific spot on the EEPROM for a signature word. It is digital graffiti, a “Kilroy was here”

signature. If the word is present, then “we‟ve been here before” and the EEPROM is assumed

to be programmed. If we read something other than the expected signature, then we write our

signature and initialize the EEPROM with the default frequency presets. I created two bytes,

SigByte1 and SigByte2, for my signature. You can use a single byte instead, with the

assumption that random data in the EEPROM won‟t match your byte. Non-initialized EEPROM

has a good chance (but not guaranteed) of being $00 or $FF, so a single byte value will

probably work. I put my signature at the beginning of the EEPROM address space, using 2 of

the 32 non-preset bytes.

If the signature word is incorrect, the EEPROM is programmed with the source code

frequencies. I created a table of 20 frequencies, located at the end of the program. You can

make less or more (up to 28) by changing the MaxPreset equate. The data is written to the

EEPROM using the following somewhat lengthy code:

ProgramEE:

; copy default memories from program FLASH to EE

 ldi temp1,8 ;'EEPROM STARTUP'

 rcall DisplayLine1 ;display it

 clr YH

 clr YL ;start with EEPROM byte 00

 ldi temp1,SigByte1 ;load first signature byte

 rcall WriteEE ;write it

 inc YL ;go to byte 1

5 Using EEPROM

 ldi temp1,SigByte2 ;load second signature byte

 rcall WriteEE ;write it

 ldi temp2,30 ;create space for 30 values

pe1: inc YL ;go to next EERPOM byte

 clr temp1

 rcall WriteEE ;write a 0 to EEPROM

 dec temp2 ;all 30 byte written?

 brne pe1 ;loop until all written

 ldi temp2,MaxPreset*8+8 ;load # of preset bytes

 ldi ZH,high(presets*2) ;point to preset bytes

 ldi ZL,low(presets*2)

pe2: lpm temp1,Z+ ;get byte from program memory

 adiw Y,1 ;go to next EE addr

 rcall WriteEE ;store byte in EE

 dec temp2 ;all preset bytes written?

 brne pe2 ;loop until all written

 ret

You might want to break up this routine into smaller pieces, for easier readability. I kept it

together since it accomplishes a single uninterrupted task, programming the EEPROM from

Flash memory. The first two lines let the user know we are busy with EEPROM programming.

Each write takes more than 3 ms, and we lots of bytes to write – about 0.7 seconds total in the

current configuration.

Next, we write the signature word followed by 30 zeroed-out bytes for future use. Starting at

label pe2, each frequency preset is loaded from program memory and copied to EEPROM.

These presets are read one byte at a time by the LPM instruction, and stored in EEPROM by

the WriteEE routine. Notice that program memory is indexed differently than SRAM memory,

and so we need to multiply our „presets‟ label by 2 to get to the correct program memory

location.

Each time the program starts, we need to check the signature word and initialize EEPROM if

necessary. The appropriate spot for this check is in the initialization section, before the start of

the main program loop. If the retrieved data matches our signature, then EEPROM is ready for

use. Otherwise, program it with our default presets:

CheckEE:

; looks to see if EE has been loaded with default presets

; if not, defaults are programmed into the EE

 clr YH

 clr YL ;go to byte 00

 rcall ReadEE ;look at first signature byte

 cpi temp1,SigByte1 ;is it correct?

 brne ee1 ;no, so store defaults

 inc YL ;go to byte 01

 rcall ReadEE ;look at second signature byte

 cpi temp1,SigByte2 ;is it correct?

 brne ee1 ;no, so store defaults

 rjmp ee2 ;signature byte OK, so done

ee1: rcall ProgramEE ;write defaults to EE

ee2: ret

Loading factory defaults is useful enough to consider adding it to the user-interface.

6 Using EEPROM

Upgrading the VFO Memory project

Now that the EEPROM has been loaded with preset frequencies, we can upgrade the VFO

memory project to get its presets from EEPROM. The mode1 encoder routine now looks like

this:

ENCODERMODE1:

 lds temp1,preset ;get current preset#

 tst encoder ;which way did encoder turn?

 brmi e11

 cpi temp1,MaxPreset ;CW rotation

 brge e12 ;hard stop at Max Preset

 inc temp1 ;go to next higher preset

 rjmp e12

e11: cpi temp1,0 ;CCW rotation

 breq e12 ;hard stop at 0

 dec temp1 ;go to next lower preset

e12: clr encoder ;ignore any more requests

 sts preset,temp1 ;save current preset#

 rcall LoadEEMem ;get the preset in LCD buffer

 rcall ShowPreset ;and display it

This code increments/decrements the preset variable, according to encoder direction, limiting

the value to between 0 and MaxPreset. Thanks to a suggestion by Tom, AK2B, I use the

LDS/STS instructions to access the preset variable. The last two lines are the business end of

the routine, loading the preset from EEPROM and then displaying it on the LCD. In my first

version of the project, I used the original output routine, which displays the frequency as

“10,000,000 Hz”. I found myself mistakenly trying to „tune‟ this value, forgetting I was in preset

mode. So I modified the display a little bit, showing the preset number as #00, followed by a

more compact frequency displayed as “10.000000”.

To display the preset number, I first used the ShowHex routine from the original code. But

when it displays „13‟, it is hard to remember that this is actually preset decimal number 19 and

not 13. So I wrote a small routine to display the decimal number instead. I thought I would be

able to find a quickie routine from the internet, but everything I found was too complicated. All

we need is to decode one byte and display a decimal number from 0 to 99. So I got out my

notepad and wrote something that counted the number of tens (10‟s), displayed it, and then

displayed the remainder, which is the number of ones. For example, 23 is 2 tens and 3 ones.

Here it is:

SHOWDECIMAL: ;displays a number 00-99 on the LCD

 clr temp2 ;10's counter

sd1: cpi temp1,10 ;at least 10 remaining?

 brlo sd2 ;no, done counting 10's

 inc temp2 ;count the next 10

 subi temp1,10 ;remove the next 10

 brpl sd1 ;loop until all 10's gone

sd2: mov temp3,temp1 ;save 10's counter

 mov temp1,temp2

 rcall ShowDec ;display 10's digit

 mov temp1,temp3 ;get 1's digit

7 Using EEPROM

 rcall ShowDec ;and display it

 ret

The VFO project changed frequencies while scrolling through the presets. I thought about this

and decided that I only wanted to change the DDS output when I selected a preset, not when

scrolling through them. So I moved the DDS update to the button‟s Tap Up event.

In the Button Event project [http://w8bh.net/avr/ButtonEvents.pdf], I derived four different events

for a single button press: tap-down, tap-up, hold-down, and hold-up. When using a hold to

change modes, the hold-up event is useful as a way to initialize the new mode, and prepare the

display for user-input. The tap-down event can be used for the button press, but if it will also be

called when the user is pressing the button at the start of a hold. If you need a strictly non-hold

event, using tap-up might be a better choice than tap-down.

Loading presets from EEPROM is finished, but only half of the project. We still need a way of

saving new presets. Where should we attach our new EEPROM writing routines? I created

another mode for this, since it seemed intuitive. Could you put it somewhere else? I suppose

you could put it at after scrolling the last preset, or before the first preset. You could also

dedicate an input pin to enable EEPROM programming, and check this pin when jumping to the

preset routines. Maybe you can find another spot that works better for you.

The code for the mode2 encoder routine looks very similar to mode1:

ENCODERMODE2:

 lds temp1,preset ;get current preset#

 tst encoder ;which way did encoder turn?

 brmi e21

 cpi temp1,MaxPreset ;CW rotation

 brge e22 ;hard stop at Max Preset

 inc temp1 ;go to next higher preset

 rjmp e22

e21: cpi temp1,0 ;CCW rotation

 breq e22 ;hard stop at 0

 dec temp1 ;go to next lower preset

e22: clr encoder ;ignore any more requests

 sts preset,temp1 ;save current preset#

 rcall ShowPresetNum ;display preset number

 ret

It is almost exactly the same, except that the step that loads the preset from memory is missing.

We only want to the user to decide the location of our new frequency preset. So the action is to

change the preset number while the encoder shaft is rotated. The preset is not written to

EEPROM until the user confirms the save with a tap. Again, tap-up is used, so that he user can

hold the button down to cancel:

TAPUP2:

 lds temp1,preset

 rcall SaveEEmem ;save preset to EEPROM

 ldi temp1,9

 rcall DisplayLine2 ;display 'SAVED'

 ldi temp1,2

http://w8bh.net/avr/ButtonEvents.pdf

8 Using EEPROM

 rcall Blink_LED ;blink for user feedback

 ldi temp1,0

 rcall ChangeMode ;return to tuning mode

 ret

The preset is written by the call to SaveEEMem. This is all you really need. I added a LCD

message and a LED blink to visually indicate that the preset was saved. After saving I return

control back to tuning mode.

That‟s about it. What else could we do with the EEPROM? It would be a great place to save

some VFO preferences, such as:

- Preferred tuning rate

- Tuning direction

- Frequency display format

- RIT/Split settings

- IF offset(s)/IF mode

All of these preferences can fit in the reserved space at the beginning of the EEPROM address

space. If you are using the DDS kit for more than just a VFO (for example, rig control or a

keyer) you still have plenty of space in the upper 256 bytes for other settings. If this still isn‟t

enough space for your application, upgrading to the ATmega328 will double the EEPROM to

1024 bytes.

Below is the full source code for my upgraded VFO memory project, which now uses EEPROM

to save frequencies. The interface works, but there is always room for improvement. For

example, a „Restore Factory Defaults‟ option would be useful. Don‟t be afraid to modify it to suit

your needs. Have fun!

Instructions

To go to a preset frequency: hold the button down for 1 second until you see „scroll presets‟ on

the LCD. Turn the encoder knob until you see the frequency you want. Press the button to

select the frequency.

To save a new preset frequency: First, go to the frequency you want to display. Then hold the

button down for 2 seconds, until you see „save a preset‟. Turn the encoder knob until it displays

the slot in which you want to save the preset. Press the button to save the frequency. If you

want to cancel without saving, hold the button down for 1 second until you see „VFO tuning

mode‟.

9 Using EEPROM

Source Code

; 1. In the block of defines, Add/Change the following register definitions:

; .def release = R21

; .def hold = R15

; 2. In .dseg, add the following lines

; mode: .byte 1 ; 0=tuning mode; 1=load preset; 2=save preset

; preset: .byte 1 ; buffer for current frequency preset number

; flags: .byte 1 ; bit0 = hold in progress

; 3. Insert the following instruction below the ‘menu’ label

; rjmp W8BH ;!! go to new main program

;***

;* W8BH – INTERRUPT VECTOR TABLE

;***

; use RJMP instructions with ATmega88 chips

; use JMP instructions with ATmega328 chips

.cseg

.org $000

 jmp RESET

.org INT0addr

 jmp EINT0 ; New External Interrupt Request 0

.org INT1addr

 jmp EINT1 ; New External Interrupt Request 1

.org OVF0addr

 jmp OVF0 ; Timer/Counter0 Overflow

.org OVF2addr

 jmp OVF2 ; Timer/Counter2 overflow

.org INT_VECTORS_SIZE

;***

;* W8BH - INITIALIZATION CODE

;***

W8BH:

 ldi temp1,$03 ;binary 0000.0011

 out DDRB,temp1 ;set PB0,1 as output

 ldi temp1,$3C ;binary 0011.1100

 out PORTB,temp1 ;set pullups on PB2-5

 ldi temp1,$A3 ;b1010.0011 (add bit PD7)

 out DDRD,temp1 ;set PD0,1,5,7 outputs

 clr release ;no button events on startup

 clr hold ;no hold events on startup

 clr temp1

 sts mode,temp1 ;start mode0 = normal operation

 sts flags,temp1 ;nothing to flag yet

 sts preset,temp1 ;start with first preset

 ldi temp1, $07 ;set timer2 prescale divider to 1024

 sts TCCR2B,temp1

 ldi temp1, $01 ;enable TIMER2 overflow interrupt

 sts TIMSK2,temp1

10 Using EEPROM

 rcall CheckEE ;make sure EEPROM is initialized

 ldi temp1,1

 rcall DisplayLine1 ;startup message

;***

;* W8BH - REVISED MAIN PROGRAM LOOP

;***

MAIN:

 rcall CheckEncoder ;check for encoder action

 rcall CheckButton ;check for button events

 rcall CheckHold ;check for button holds

 rcall Keypad ;check for keypad action

 rjmp Main ;loop forever

CHECKENCODER:

 tst encoder ;any encoder requests?

 breq ce9 ;no, so quit

 lds temp1,mode

 cpi temp1,0 ;are we in normal mode (0)?

 brne ce1 ;no, skip

 rcall EncoderMode0 ;yes, handle it

 rjmp ce9

ce1: cpi temp1,1 ;are we in mode 1?

 brne ce2 ;no, skip

 rcall EncoderMode1 ;yes, handle it

 rjmp ce9

ce2: cpi temp1,2 ;are we in mode 2?

 brne ce3 ;no, skip

 rcall EncoderMode2 ;yes, handle it

 rjmp ce9

ce3:

ce9: ret

CHECKHOLD:

 tst hold ;any new hold event?

 brpl ck1 ;no, so quit

 lds temp1,flags

 sbr temp1,$01 ;flag the hold

 sts flags,temp1 ;save it

 rcall ButtonHoldDown ;do the hold event

 clr hold ;reset = allow future holds

ck1: ret

CHECKBUTTON:

 tst encoder ;any encoder requests?

 brne cb4 ;wait until encoder is done

 tst press ;any button down events?

 breq cb1 ;no, check for button up events?

 rcall ButtonTapDown ;do the button down

 dec press ;one less button tap to do

cb1: tst release ;any button up events?

 breq cb4 ;no, so quit

 lds temp1,flags

 sbrs temp1,0 ;is there a hold in progress?

 rjmp cb2 ;no

 cbr temp1,$01 ;yes, remove hold flag

 sts flags,temp1 ;save un-held state

11 Using EEPROM

 rcall ButtonHoldUp ;do hold release

 rjmp cb3

cb2: rcall ButtonTapUp ;do the Tap Release

cb3: dec release ;one less release to do

cb4: ret

BUTTONTAPUP:

 lds temp1,mode ;get mode

 cpi temp1,0 ;are we in mode0?

 brne tu1 ;no, skip

; rcall TapUp0 ;yes, handle it

 rjmp tu9

tu1: cpi temp1,1 ;are we in mode1?

 brne tu2 ;no, skip

 rcall TapUp1 ;yes, handle it

 rjmp tu9

tu2: cpi temp1,2 ;are we in mode2?

 brne tu3 ;no, skip

 rcall TapUp2 ;yes, handle it

 rjmp tu9

tu3: ;placeholder for higher modes

tu9: ret

BUTTONTAPDOWN:

 lds temp1,mode ;get mode

 cpi temp1,0 ;are we in mode0?

 brne td1 ;no, skip

 rcall TapDown0 ;yes, handle it

 rjmp td9

td1: cpi temp1,1 ;are we in mode1?

 brne td2 ;no, skip

; rcall TapDown1 ;yes, handle it

 rjmp td9

td2: cpi temp1,2 ;are we in mode2?

 brne td3 ;no, skip

; rcall TapDown2 ;yes, handle it

 rjmp td9

td3: ;placeholder for higher modes

td9: ret

BUTTONHOLDUP:

 lds temp1,mode ;get mode

 cpi temp1,0 ;are we in mode0?

 brne hu1 ;no, skip

 rcall HoldUp0 ;yes, handle it

 rjmp hu9

hu1: cpi temp1,1 ;are we in mode1?

 brne hu2 ;no, skip

 rcall HoldUp1 ;yes, handle it

 rjmp hu9

hu2: cpi temp1,2 ;are we in mode2?

 brne hu3 ;no, skip

 rcall HoldUp2 ;yes, handle it

 rjmp hu9

hu3: ;placeholder for higher modes

hu9: ret

BUTTONHOLDDOWN:

 lds temp1,mode ;get mode

 cpi temp1,0 ;are we in mode0?

 brne hd1 ;no, skip

 rcall HoldDown0 ;yes, handle it

12 Using EEPROM

 rjmp td9

hd1: cpi temp1,1 ;are we in mode1?

 brne hd2 ;no, skip

 rcall HoldDown1 ;yes, handle it

 rjmp hd9

hd2: cpi temp1,2 ;are we in mode2?

 brne hd3 ;no, skip

 rcall HoldDown2 ;yes, handle it

 rjmp hd9

hd3:

hd9: ret

CHANGEMODE:

; call this routine with new mode in temp1

; only action is to change the message on Line 1

 sts mode,temp1 ;save the new mode

 cpi temp1,0 ;mode 0?

 brne cm1 ;no, skip

 inc temp1

 rcall DisplayLine1 ;yes, show normal title

 rjmp cm9

cm1: cpi temp1,1 ;mode 1?

 brne cm2 ;no, skip

 inc temp1

 rcall DisplayLine1 ;yes, show mode 1 title

 rjmp cm9

cm2: cpi temp1,2 ;mode 2?

 brne cm3 ;no, skip

 inc temp1

 rcall DisplayLine1 ;yes, show mode 2 title

 rjmp cm9

cm3: ;placeholder for higher modes

cm9: ret

QUICKBLINK:

 cbi PORTC,LED ;turn LED on

 ldi delay,15 ;keep on 20 ms

 rcall wait

 sbi PORTC,LED ;turn LED off

 ret

;***

;* W8BH - MODE 0 (VFO TUNING) ROUTINES

;***

ENCODERMODE0:

; This code taken from original program loop.

; Called when there is a non-zero value for encoder variable.

; Negative encoder values = encoder has turned CCW

; Positive encoder values = encoder has turned CW

; In mode 0, encoder should increase/decrease the DDS freq

 tst encoder

 brpl e02 ;which way did encoder rotate?

 inc encoder ;remove 1 negative rotation

 rcall DecFreq0 ;reduce displayed frequency

 cpi temp1,55 ;55 = all OK

 brne e01

 rcall IncFreq0 ;correct freq. underflow

 rjmp e05

13 Using EEPROM

e01: rcall DecFreq9 ;reduce magic number

 rjmp e04

e02: dec encoder ;remove 1 positive rotation

 rcall IncFreq0 ;increase displayed frequency

 cpi temp1,55 ;55 = all OK

 brne e03

 rcall DecFreq0 ;correct freq. overflow

 rjmp e05

e03: rcall IncFreq9 ;increase magic number

e04: rcall FREQ_OUT ;update the DDS

 rcall ShowFreq ;display new frequency

e05: rcall QuickBlink

 ret

TAPDOWN0:

; This code taken from original program loop.

; Called when there is a non-zero value for press variable.

; Non-zero value = number of times button has been pressed

; In mode 0, button should advance cursor to the right

 tst encoder ;check for pending encoder requests

 brne b01 ;dont advance cursor until encoder done

 dec StepRate ;advance cursor position variable

 brpl b01 ;position >= 0 (Hz position)

 ldi StepRate,7 ;no, so go back to 10MHz position

b01: rcall ShowCursor

 rcall QuickBlink ;flash the LED

 ret

HOLDDOWN0:

; Called when button has been held down for about 1 second.

; In mode 0, action should be to invoke mode1 = scrolling freq. presets

 ldi temp1,1

 rcall ChangeMode ;go to next mode

 ret

HOLDUP0:

; Called when entering this mode from another mode

 rcall ShowTuning

 ret

;***

;* W8BH - MODE 1 (LOAD FREQUENCY PRESET) ROUTINES

;***

INITMODE1:

 lds temp1,preset

 rcall LoadEEMem

 rcall ClearLine2

 rcall ShowPreset

 ret

ENCODERMODE1:

 lds temp1,preset ;get current preset#

 tst encoder ;which way did encoder turn?

 brmi e11

 cpi temp1,MaxPreset ;CW rotation

14 Using EEPROM

 brge e12 ;hard stop at Max Preset

 inc temp1 ;go to next higher preset

 rjmp e12

e11: cpi temp1,0 ;CCW rotation

 breq e12 ;hard stop at 0

 dec temp1 ;go to next lower preset

e12: clr encoder ;ignore any more requests

 sts preset,temp1 ;save current preset#

 rcall LoadEEMem ;get the preset in LCD buffer

 rcall ShowPreset ;and display it

 ret

TAPUP1:

 rcall LoadNewFreq ;DDS output new frequency

 rcall ClearLine2

 ldi temp1,0

 rcall ChangeMode ;go to mode 0 = normal op.

 ret

HOLDDOWN1:

 ldi temp1,2 ;go to next mode

 rcall ChangeMode

 ret

HOLDUP1:

 rcall InitMode1

 ret

;***

;* W8BH - MODE 2 (SAVE NEW PRESET) ROUTINES

;***

ENCODERMODE2:

 lds temp1,preset ;get current preset#

 tst encoder ;which way did encoder turn?

 brmi e21

 cpi temp1,MaxPreset ;CW rotation

 brge e22 ;hard stop at Max Preset

 inc temp1 ;go to next higher preset

 rjmp e22

e21: cpi temp1,0 ;CCW rotation

 breq e22 ;hard stop at 0

 dec temp1 ;go to next lower preset

e22: clr encoder ;ignore any more requests

 sts preset,temp1 ;save current preset#

 rcall ShowPresetNum ;display preset number

 ret

TAPUP2:

 lds temp1,preset

 rcall SaveEEmem ;save preset to EEPROM

 ldi temp1,9

 rcall DisplayLine2 ;display 'SAVED'

 ldi temp1,2

 rcall Blink_LED ;blink for user feedback

 ldi temp1,0

 rcall ChangeMode ;return to tuning mode

 ret

HOLDDOWN2:

; called when leaving this mode

 ldi temp1,0 ;escape to tuning mode

15 Using EEPROM

 rcall ChangeMode

 ret

HOLDUP2:

; called when this entering this mode

 rcall ClearLine2 ;erase line 2

 rcall ShowMemFreq ;show freq left side of line2

 ret

;***

;* W8BH - MODE 3 (TESTING) ROUTINES

;***

TapDown3:

 ldi temp1,4

 rjmp dd1

TapUp3:

 ldi temp1,5

 rjmp dd1

HoldDown3:

 ldi temp1,6

 rjmp dd1

HoldUp3:

 rcall ClearLine2

 ldi temp1,7

dd1: rcall QuickBlink

 rcall DisplayLine2

 ret

;***

;* W8BH - KEYPAD ROUTINES

;***

;

; KEYPAD CONNECTIONS (7 wires)

; Row1 to PB5, Row2 to BP4,

; Row3 to PB3, Row4 to PB2,

; Col0 to PD7, Col1 to PB1, Col2 to PB0

;

; FUNCTIONS

* # = cursor right

; * = frequency presets.

KEYPAD:

 tst encoder ;is encoder busy?

 brne kp0 ;wait for encoder to finish

 cbi PORTD,PD7 ;take column1 low

 ldi temp1,2 ;col1 value is 2

 rcall ScanRows ;see if a row went low

 sbi PORTD,PD7 ;restore column1 high

 cbi PORTB,PB0 ;take column2 low

 ldi temp1,1 ;col2 value is 1

 rcall ScanRows ;see if a row went low

 sbi PORTB,PB0 ;restore col2 high

 cbi PORTB,PB1 ;take column3 low

 ldi temp1,0 ;col3 value is 0

 rcall ScanRows ;see if a row went low

 sbi PORTB,PB1 ;restore column3 high

kp0: ret

16 Using EEPROM

SCANROWS:

 clc ;clear carry

 sbis pinB,PB5 ;is row1 low?

 subi temp1,3 ;yes, subtract 3

 sbis pinB,PB4 ;is row2 low?

 subi temp1,6 ;yes, subtract 6

 sbis pinB,PB3 ;is row3 low?

 subi temp1,9 ;yes, subtract 9

 sbis pinB,PB2 ;is row4 low?

 subi temp1,12 ;yes, subtract 12

 brcc kp1 ;no carry = no keypress

 neg temp1 ;negate answer

 rcall PadCommand ;do something

kp1:ret

PADCOMMAND:

 cpi temp1,11 ;special case: is it 0?

 brne kp2 ;no, continue

 ldi temp1,0 ;yes, replace with real zero

kp2: cpi temp1,12 ;special case: "#" command?

 brne kp3 ;no, try next command

 inc press ;emulate button press = cursor right

 ldi temp1,1 ;1 blink for switch debouncing

 rjmp kp6 ;done with '#'

kp3: cpi temp1,10 ;special case:"*" command

 brne kp4 ;no, try next command

 rcall LoadNextPreset ;yes, get next preset

 rjmp kp6 ;done with '*'

kp4: mov temp2,StepRate ;no, get current cursor position

 ldi ZH,high(rcve0) ;point to frequency value in memory

 ldi ZL,low(rcve0) ;16 bits, so need two instructions

kp5: dec ZL ;advance through frequency digits

 dec temp2 ;and advance through cursor positions

 brpl kp5 ;until we get to current digit

 ld temp3,Z ;load value at cursor

 sub temp1,temp3 ;subtract from keypad digit

 mov encoder,temp1 ;set up difference for encoder routines.

 inc press ;advance cursor position

kp6: ldi delay,150 ;simple key debouncer

 rcall wait ;give the LED a rest!

 ret

;***

;* W8BH - FREQUENCY PRESET ROUTINES

;***

ZeroMagic:

 ldi ZH,high(rcve0) ;point to magic#

 ldi ZL,low(rcve0)

 ldi temp1,0

 st Z+,temp1 ;zero first byte (MSB)

 st Z+,temp1 ;zero second byte

 st Z+,temp1 ;zero third byte

 st Z+,temp1 ;zero fourth byte (LSB)

 ret

ShowMagic:

 ldi ZH,high(rcve0) ;point to magic number

17 Using EEPROM

 ldi ZL,low(rcve0) ;2 byte pointer

 ldi temp3,4 ;counter for 4 byte display

 ldi temp1,$80 ;display on line1

 rcall LCDCMD

sh1: ld temp1,Z+ ;point to byte to display

 rcall SHOWHEX ;display first nibble

 ldi temp1,' ' ;add a space

 rcall LCDCHR ;display the space

 dec temp3 ;all 4 bytes displayed yet?

 brne sh1 ;no, so do the rest

 ret

AddMagic:

; adds one component to magic according to StepRate

; 0 = Hz rate, 3=Khz rate, 6=MHz rate, 7=10MHz rate

 rcall IncFreq9

 ret

BuildMagic:

 push StepRate ;save StepRate

 ldi XH,high(LCDrcve0) ;point to LCD digits

 ldi XL,low(LCDrcve0) ;16bit pointer

 ldi StepRate,7 ;Start with 10MHz position

bm1: ld temp3,X+ ;get next LCD digit

 tst temp3 ;is it zero?

 breq bm3 ;yes, so go to next digit

bm2: rcall AddMagic ;no, so add magic component

 dec temp3 ;all done with this component

 brne bm2 ;no, add some more

bm3 :dec StepRate ;all done with freq. positions?

 brne bm1 ;no, go to next (lowest) position

 pop StepRate ;restore StepRate

 ret

LoadPMmem:

 ldi ZH,high(freqLCD*2) ;point to the preset table (-8 bytes)

 ldi ZL,low(freqLCD*2) ;16bit pointer

lp1: adiw ZL,8 ;point to next frequency preset

 dec temp1 ;get to the right preset yet?

 brne lp1 ;no, keep looking

 ldi YH,high(LCDrcve0) ;yes, point to LCD digits

 ldi YL,low(LCDrcve0) ;16bit pointer

 ldi temp2,8 ;there are 8 frequency digits

lp2: lpm temp1,Z+ ;get an LCD digit from FLASH mem

 st Y+,temp1 ;and put into LCD display buffer

 dec temp2 ;all digits done?

 brne lp2 ;not yet

 ret

LoadNewFreq:

 rcall ZeroMagic ;clear out old magic number

 rcall BuildMagic ;build new one based on current freq

 rcall Freq_Out ;send new magic to DDS

; rcall ShowMagic ;show magic# on line 1 (debugging)

;nf1 :tst encoder ;wait for encoder

; breq nf1

 ret

LoadNextPreset:

 lds temp1,preset

 cpi temp1,MaxPreset

 brne ln1

 clr temp1

18 Using EEPROM

 rjmp ln2

ln1: inc temp1

ln2: sts preset,temp1

 rcall LoadEEMem ;get preset from EE

 rcall LoadNewFreq ;update DDS with new freq

 rcall ShowTuning ;display it

 ret

;***

;* W8BH - Timer 2 Overflow Interrupt Handler

;***

; This handler is called every 8 ms @ 20.48MHz clock

; Increments HOLD counter (max 128) when button held

; Resets HOLD counter if button released before hold met

; Sets hold & down flags in button state register.

OVF2:

 push temp1

 in temp1,SREG ;save status register

 push temp1

 ldi temp1,90 ;256-90=160; 160*50us = 8ms

 sts TCNT2,temp1 ;reduce cycle time to 8 ms

 tst hold ;counter at max yet?

 brmi ov1 ;not yet

 sbic pinD,PD3

 clr hold ;if button is up, then clear

 sbis pinD,PD3

 inc hold ;if button is down, then count

ov1: pop temp1

 out SREG,temp1 ;restore status register

 pop temp1

 reti

;***

;* W8BH - External Interrupt 1 Handler

;***

; This handler replaces the original EXT_INT1 code

; It is called when a logic-level change on the

; external interrupt 1 (pushbutton) pin occurs.

; Press is incremented on button-down events.

; Release is incremented on button-up events.

EINT1:

 push temp1 ;save temp1 register

 in temp1,SREG

 push temp1 ;save status register

 lds temp1,EICRa ;get interrupt control register

 sbrs temp1,2 ;bit2: rising edge =0, falling edge =1

 rjmp ei1

 ;here is the falling-edge code

 cbr temp1,$04 ;falling edge '11' -> rising edge '10'

 inc release ;count the button-up

 rjmp ei2

 ;here is the rising-edge code

ei1: sbr temp1,$04 ;rising edge '10' -> falling edge '11'

 inc press ;count the button-down

ei2: sts EICRa,temp1 ;save interrupt control register

 pop temp1

 out SREG,temp1 ;restore status register

 pop temp1 ;restore temp1 register

 reti

19 Using EEPROM

;***

;* W8BH - External Interrupt 0 Handler

;***

; This handler replaces the original EXT_INT0 code

; It is called when a logic-level change on the

; external interrupt 0 (encoder state) pin occurs.

; Press is incremented on button-down events.

; Release is incremented on button-up events.

EINT0:

 push temp1 ;save temp1 register

 in temp1,SREG ;save the status register

 push temp1

 lds temp1,EICRA ;get current interrupt mode

 sbrs temp1,0 ;is mode rising-edge?

 rjmp i02 ;no, so go to falling edge (bit0=0)

 cbr temp1,$01 ;yes, clear bit 0

 sts EICRA,temp1 ;change mode to falling-edge

 sbis PIND,PHASE ;is PHASE=1?

 rjmp i01 ;no, increase encoder (CW rotation)

 dec encoder ;yes, decrease encoder (CCW rotation)

 rjmp i04

i01: inc encoder

 rjmp i04

i02: ;current mode = falling-edge

 sbr temp1,$01 ;set bit 0

 sts EICRA,temp1 ;change mode to rising-edge

 sbis PIND,PHASE ;is PHASE=1?

 rjmp i03 ;no, decrease encoder (CCW rotation)

 inc encoder ;yes, increase encoder (CW rotation)

 rjmp i04

i03: dec encoder

i04: pop temp1

 out SREG,temp1 ;restore the status register

 pop temp1 ;restore temp1 register

 reti

;***

;* W8BH - Message Display routines

;***

;DISPLAYMSG:

; displays a null-terminated message on line 1

; call with pointer to message in Z

; ldi temp1,$80 ;use line 1

; rcall LCDCMD

; rcall DISPLAY_LINE ;display the message

; ldi StepRate,3 ;put cursor at KHz posn

; rcall ShowCursor

; ret

DISPLAYLINE1:

; displays a 16-character msg on line 1

; call with msg# in temp1

 mov temp2,temp1

 ldi temp1,$80 ;use line 1

 rcall LCDCMD

 rcall DISPLAY16 ;send 16 characters

20 Using EEPROM

 ret

DISPLAYLINE2:

; displays a 16-character msg on line 2

; call with msg# in temp1

 mov temp2,temp1

 ldi temp1,$C0 ;use line 2

 rcall LCDCMD

 rcall DISPLAY16 ;send 16 characters

 ret

DISPLAY16:

; displays a 16-character msg

; call with msg# in temp2

 ldi ZH,high(messages*2-16)

 ldi ZL,low(messages*2-16)

di1: adiw Z,16 ;add 16 for each message

 dec temp2 ;add enough?

 brne di1 ;no, add some more

 ldi temp3,16 ;16 characters

di2: lpm temp1,Z+ ;get the next character

 rcall LCDCHR ;put character on LCD

 dec temp3 ;all 16 chars sent?

 brne di2 ;no, so repeat

 ret

CLEARLINE2:

 ldi temp1,$C0 ;point to second display line

 rcall LCDCMD

 ldi temp3,16 ;16 characters to write

cl1: ldi temp1,' '

 rcall LCDCHR ;write a blank space

 dec temp3 ;all 16 written?

 brne cl1 ;not yet

 ret

SHOWDECIMAL:

;displays a number 00-99 on the LCD

 clr temp2 ;10's counter

sd1: cpi temp1,10 ;at least 10 remaining?

 brlo sd2 ;no, done counting 10's

 inc temp2 ;count the next 10

 subi temp1,10 ;remove the next 10

 brpl sd1 ;loop until all 10's gone

sd2: mov temp3,temp1 ;save 10's counter

 mov temp1,temp2

 rcall ShowDec ;display 10's digit

 mov temp1,temp3 ;get 1's digit

 rcall ShowDec ;and display it

 ret

SHOWMEMFREQ:

; Displays the frequency in a more compact form: 'XX.XXXXXX'

 ldi temp1,$C5 ;Line 2, after preset number

 rcall LCDCMD ;move cursor

 ldi ZH,high(LCDrcve0) ;point to frequency buffer

 ldi ZL,low(LCDrcve0) ;16 bit address

 ld temp1,Z+ ;get firstdigit from the buffer

 rcall ShowDec ;and display it

 ld temp1,Z+ ;get second digit (MHz)

 rcall ShowDec ;and display it.

21 Using EEPROM

 ldi temp1,'.' ;decimal point

 rcall LCDCHR

 ldi temp2,6 ;6 digits after decimal

cf1: ld temp1,Z+ ;get next frequency digit

 rcall SHOWDEC ;and display it

 dec temp2 ;all 6 done?

 brne cf1 ;not yet

 ret

SHOWPRESETNUM:

; displays current preset '#xx' on line2

 ldi temp1,$C0 ;start of line2

 rcall LCDCMD ;move cursor

 ldi temp1,'#' ;display „#‟

 rcall LCDCHR

 lds temp1,preset ;get preset number

 rcall ShowDecimal ;and display it

 ret

SHOWPRESET:

 rcall ShowPresetNum ;first show preset number

 rcall ShowMemFreq ;then show preset frequency

 ret

SHOWTUNING:

 rcall ClearLine2 ;erase second line

 rcall ShowFreq ;format = “xx,xxx,xxx Hz”

 ldi StepRate,3 ;put cursor at KHz position

 rcall ShowCursor

 ret

;***

;* W8BH - EEPROM routines

;***

;Data is transferred to/from temp1 (single byte) or Z (multiple bytes)

;EE address must be put into Y prior to call

;See ATMEL application note "AVR100"

.equ SigByte1 = 'B' ;first signature byte

.equ SigByte2 = 'H' ;second signature byte

ReadEE:

 sbic EECR,EEPE ;busy writing EEPROM?

 rjmp ReadEE ;yes, so wait

 out EEARH,YH ;set up address reg.

 out EEARL,YL

 sbi EECR,EERE ;strobe the read bit

 in temp1,EEDR ;get the data

 ret

WriteEE:

 sbic EECR,EEPE ;busy writing EEPROM?

 rjmp WriteEE ;yes, so wait

 out EEARH,YH ;set up address reg.

 out EEARL,YL

 out EEDR,temp1 ;put data in data reg.

 cli ;dont interrupt the write

 sbi EECR,EEMPE ;master write enable

 sbi EECR,EEPE ;strobe the write bit

 sei ;interrupts OK now

 ret

22 Using EEPROM

Read8E: ;read 8 bytes from EE

 ldi temp2,8 ;counter=8

r81: rcall ReadEE ;get byte from EE

 st Z+,temp1 ;move byte to destination

 adiw Y,1 ;go to next EE addr

 dec temp2

 brne r81

 ret

Write8E: ;write 8 bytes to EE

 ldi temp2,8 ;counter=8

r82: ld temp1,Z+ ;get byte from source

 rcall WriteEE ;store byte in EE

 adiw Y,1 ;go to next EE addr

 dec temp2

 brne r82

 ret

ProgramEE:

; copy default memories from program FLASH to EE

 ldi temp1,8 ;'EEPROM STARTUP'

 rcall DisplayLine1 ;display it

 clr YH

 clr YL ;start with EEPROM byte 00

 ldi temp1,SigByte1 ;load first signature byte

 rcall WriteEE ;write it

 inc YL ;go to byte 1

 ldi temp1,SigByte2 ;load second signature byte

 rcall WriteEE ;write it

 ldi temp2,30 ;create space for 30 values

pe1: inc YL ;go to next EERPOM byte

 clr temp1

 rcall WriteEE ;write a 0 to EEPROM

 dec temp2 ;all 30 byte written?

 brne pe1 ;loop until all written

 ldi temp2,MaxPreset*8+8 ;load # of preset bytes

 ldi ZH,high(presets*2) ;point to preset bytes

 ldi ZL,low(presets*2)

pe2: lpm temp1,Z+ ;get byte from program memory

 adiw Y,1 ;go to next EE addr

 rcall WriteEE ;store byte in EE

 dec temp2 ;all preset bytes written?

 brne pe2 ;loop until all written

 ret

CheckEE:

; looks to see if EE has been loaded with default presets

; if not, defaults are programmed into the EE

 clr YH

 clr YL ;go to byte 00

 rcall ReadEE ;look at first signature byte

 cpi temp1,SigByte1 ;is it correct?

 brne ee1 ;no, so store defaults

 inc YL ;go to byte 01

 rcall ReadEE ;look at second signature byte

 cpi temp1,SigByte2 ;is it correct?

 brne ee1 ;no, so store defaults

 rjmp ee2 ;signature byte OK, so done

ee1: rcall ProgramEE ;write defaults to EE

ee2: ret

LoadEEMem:

23 Using EEPROM

; specify the preset# in temp1

; will return the EE memory into LCDrcve0

 clr YH

 ldi YL,32 ;start of presets

 ldi ZH,high(LCDrcve0) ;point to frequency buffer

 ldi ZL,low(LCDrcve0)

ge0: cpi temp1,0 ;are we at zero yet?

 breq ge1 ;yes, so pointer correct

 adiw Y,8 ;add 8 for each preset

 dec temp1 ;finished counting?

 brne ge0 ;no, so continue counting

ge1: rcall Read8E ;read preset from EEPROM

 ret

SaveEEMem:

; specify the preset# in temp1

; will save frequency in LCDrcve0 to EE

 clr YH

 ldi YL,32 ;start of presets

 ldi ZH,high(LCDrcve0) ;point to frequency buffer

 ldi ZL,low(LCDrcve0)

se0: cpi temp1,0 ;are we at zero yet?

 breq se1 ;yes, so pointer correct

 adiw Y,8 ;add 8 for each preset

 dec temp1 ;finished counting?

 brne se0 ;not yet

se1: rcall Write8E ;save preset to EEPROM

 ret

;***

;* W8BH - END OF INSERTED CODE

;***

24 Using EEPROM

; The following goes at the end of the source code:

;***

;*

;* USER-ADDED FREQUENCY PRESETS

;*

;***

.equ MaxPreset = 19

;20 user-defined presets can be specified here

;Enter the values that you want to store into EEPROM

presets: ;One line for each preset freq

.db 0,3,5,6,0,0,0,0 ;80M qrp calling = 3.560 MHz

.db 0,7,0,3,0,0,0,0 ;40M qrp calling = 7.030 MHz

.db 1,0,0,0,0,0,0,0 ;WWV = 10.000 MHz

.db 1,0,1,0,6,0,0,0 ;30M qrp calling = 10.106 MHz

.db 1,4,0,6,0,0,0,0 ;20M qrp calling = 14.060 MHz

.db 1,8,0,9,6,0,0,0 ;17M qrp calling = 18.096 MHz

.db 2,1,0,6,0,0,0,0 ;15M qrp calling = 21.060 MHz

.db 2,4,9,0,6,0,0,0 ;12M qrp calling = 24.906 MHz

.db 2,8,0,6,0,0,0,0 ;10M qrp calling = 28.060 MHz

.db 0,1,0,0,0,0,0,0 ; = 01.000 MHz

.db 0,2,0,0,0,0,0,0 ; = 02.000 MHz

.db 0,3,0,0,0,0,0,0 ; = 03.000 MHz

.db 0,4,0,0,0,0,0,0 ; = 04.000 MHz

.db 0,5,0,0,0,0,0,0 ; = 05.000 MHz

.db 0,6,0,0,0,0,0,0 ; = 06.000 MHz

.db 0,7,0,0,0,0,0,0 ; = 07.000 MHz

.db 0,8,0,0,0,0,0,0 ; = 08.000 MHz

.db 0,9,0,0,0,0,0,0 ; = 09.000 MHz

.db 1,0,0,0,0,0,0,0 ; = 10.000 MHz

.db 1,2,3,4,5,6,7,8 ;Test freq = 12.345 MHz

messages:

.db "VFO Tuning Mode " ;1

.db "Scroll Presets " ;2

.db "Save New Preset " ;3

.db "Mode 4 " ;4

.db "Mode 5 " ;5

.db "Mode 6 " ;6

.db "Mode 7 " ;7

.db "EEPROM STARTUP " ;8

.db " SAVED " ;9

