

A Memory Keyer

for your DDS Development Kit

By Bruce Hall, W8BH

This article will describe how to add a memory keyer to your DDS Development kit. In the last

project (http://w8bh.net/avr/IambicKeyer.pdf), I created a simple iambic keyer. This project will

build on that keyer, adding the ability to send two user-defined messages.

The first thing I did was search for similar projects. Many different keyers, beacons, repeater

controllers and such have been developed, and surely hams have published ways of

automating Morse code output. I found three different methods, each one using the idea of

encoding Morse dits and dahs as binary 1’s and 0’s.

For example, some keyers use a binary 1 to indicate key down, and a 0 to indicate key up. A

‘C’ would be encoded as 11101011101: three ones for a dah, then a one for a dit, etc. This

method is described by David Robinson WW2R/G4FRE (http://g4fre.com/keyers2.htm). A

second method, used by Hans Summers in his QRSS beacons

(http://www.hanssummers.com/qrsskeyer), is to code a dit as a ‘0’ and dah as a ‘1’. The byte is

scanned from right to left, looking for a ‘0’ start bit. Once found, the remaining bits are

converted to Morse output. This method works well in the C programming language. Using this

method, ‘C’ is encoded as 11101010 or $EA. The third and oldest method was described by

Jeff Otterson N1KDO in his Feb 1997 QST article. Using ‘0’ for dit and ‘1’ for dah, the byte was

shifted to the right until a single ‘1’ remained. For example, a ‘C’ would be coded as 00010101

or $15.

For my method I use a combination of the second and third methods above. I like the N1KDO

idea of shifting the byte to get the next bit: it’s an assembly-friendly method, but the codes must

be entered and read from right to left. I prefer the more natural left-to-right encoding that Hans

uses. I also visually think of dits as skinny 1’s and dahs as rounder 0’s, but that’s just me. My

algorithm for stuffing Morse characters into bytes goes like this:

- Shift the byte to the left, into the carry bit, so that we’re reading left to right

- If the carry bit is set (1), then send a dit. Otherwise send a dah.

- If we are left with a stop bit of ‘1’ ($80), we’re done. Otherwise repeat.

My ‘C’ is 01011000 or $58. The code for this algorithm is just as simple:

http://w8bh.net/avr/IambicKeyer.pdf
http://g4fre.com/keyers2.htm
http://www.hanssummers.com/qrsskeyer

2 Memory Keyer

MorseOut:

; call this routine with the encoded morse byte in temp1

 cpi temp1,$80 ;found stop bit yet:

 breq mo2 ;yes, so quit

 lsl temp1 ;no, get next bit into carry

 brcs mo1 ;is the bit a dit? (bit=1)

 rcall dah ;no, so send a dah

 rjmp morseout

mo1: rcall dit ;yes, so send a dit

 rjmp morseout

mo2: rcall ditwait ;end of char spacing

 rcall ditwait

 ret

CQtest:

; sends a CQ

 ldi temp1,$58 ;binary 0101.1000 = 'C'

 rcall MorseOut

 ldi temp1,$28 ;binary 0010.1000 = 'Q'

 rcall MorseOut

 ret

I like to test things as I go along, so I added the CQtest routine. The C (dah-di-dah-dit) is coded

as 0101, with a 1 stop bit added to the end. Similarly Q is 0010 with an extra 1 on the end.

Add the two routines above to the Iambic Keyer project, and put a call to CQtest in the

initialization part of the program. When your DDS kits resets, you’ll see the LED flash ‘CQ’.

Very cool.

We could code all of our messages this way, but it would be a little tedious. Every time we want

to create a message, we would have to mentally convert each letter into ‘coded-morse’, then

send those coded bytes to the MorseOut routine. It would be much nicer if we could just send

a text message using plain ASCII characters, like ‘CQ de W8BH’. To do this we’ll need a

second routine to convert ASCII characters to coded-morse.

To convert an ASCII character to coded-morse, I use a simple lookup table. Each text character

is mapped to its corresponding coded-morse byte. For example, assume our table begins with

‘A’. The first entry will be the coded-morse for ‘A’, which is 1010000. (Remember, the extra one

at the end is the stop bit.) The second entry will be for ‘B’, and so on. If the input character is

an ‘E’, all we need to do is grab the fifth table entry and we’re done.

The ASCII-to-Morse conversion table never needs to be changed, so program memory is a

good place to put it. I put my table at the end of the program, where the strings and default VFO

frequencies are kept.

So, can we begin this table with the letter ‘A’, as I suggested above? I guess so, but that is a

poor choice. The ASCII code (see http://ascii-code.com) is a 7-bit code with 128 entries. The

first 32 entries are nonprintable control codes, and the next 95 are printable characters. The 95

printables break down as follows: symbols (16), digits (10), symbols (7), upper case alphabet

(26), symbols (6), lower case alphabet (26) and symbols (4). We don’t need our table to include

all of these. All we need are digits, alpha characters, and a few symbols. I started my table at

http://ascii-code.com/

3 Memory Keyer

position #42, which is hex $2A, the asterisk. You could easily start anywhere from $20 to $2F,

depending on how many symbols and punctuation you wanted to include. I found it helpful to

include some symbols, so that I could assign them to prosigns like BT and SK. Here is the

code. Half of the code is just making sure that we exclude ASCII codes that we don’t need.

AsciiToMorse:

; Call with an ASCII character in temp1

; This routine will convert it into a coded-morse character

; If input is an invalid character, output = $80 (stop bit)

 ldi ZH,high(2*mtable) ;point to morse table

 ldi ZL,low(2*mtable)

 cpi temp1,$20 ;is it a space character?

 brne am1 ;no

 rcall WordWait ;yes, so wait appropriate time

 rjmp am4

am1: cpi temp1,$2A ;ignore control chars

 brmi am3

 cpi temp1,$7A ;ignore graphic chars

 brpl am3

 cpi temp1,$60 ;is it an lower-case char?

 brmi am2 ;no

 andi temp1,$DF ;yes, convert to upper-case

am2: subi temp1,$2A ;start table at $2A='*'

 add ZL,temp1 ;add char offset to table pointer

 clr temp1 ;keep only the carry bit

 adc ZH,temp1 ;add carry, if any, to ZH

 lpm temp1,Z ;get character from table

 rjmp am4 ;done

am3: ldi temp1,$80 ;output stop-bit for invalid chars

am4: ret

Notice that I subtract $2A from the input, so that ASCII code $2A (asterisk) corresponds to the

first entry in my conversion table.

Here is another neat trick: I save a lot of table space by mapping all of the lower case ASCII

characters to the corresponding upper case character. For example, the letter ‘q’ (ASCII 81) is

mapped to ‘Q’ (ASCII 113) by the ANDI temp1,$DF instruction. This single instruction works

because the difference between all of the lower case and upper case codes is a single bit: bit 5.

The ANDI instruction turns this bit from 1 into 0. Bit 5 has a value of 32 (00100000), so you

could also subtract 32 for the same result: 113-32 = 81.

Let’s try another test. Add the following code and put a call to CQtest2 in the initialization

section of your program. Again, the LED will flash CQ. This time, however, it is doing it from

text input.

CQtest2:

 ldi temp1,'c' ;send a 'c'

 rcall AsciiToMorse

 rcall MorseOut

 ldi temp1,'q' ;send a 'q'

 rcall AsciiToMorse

 rcall MorseOut

 ret

4 Memory Keyer

Now that we can send single characters, it is time to send some longer messages. All we need
is a single loop that gets each character from the message, convert it to coded-morse, and then
output it. We’ll use a 0 to mark the end of the message.

MorseMsg:

; call with Z pointing to message

; will output Morse

mm1: lpm temp1,Z+ ;get next ASCII character

 tst temp1 ;look for 0=stop byte

 breq mm2 ;done

 rcall AsciiToMorse ;convert char to morse

 rcall MorseOut ;and send it

 rjmp mm1 ;no, keep going

mm2: ret

SendMorse1:

 ldi ZH,high(2*cwmem1) ;point to first CW msg

 ldi ZL,low(2*cwmem1)

 rcall MorseMsg

 ret

We can send a very, very long message with these routines. Just put your message at the end
of your program with the label ‘cwmem1:’. Terminate your message with a zero byte. I sent
some really long ones, just to make sure the table was working correctly.

One of my goals was to display messages on the LCD screen as they were being sent. The
MorseMsg routine will need to be modified, calling the LCDCHR routine each time a letter is
sent. I tried this:

MorseMsg:

; call with Z pointing to message

; will output Morse

mm1: lpm temp1,Z+ ;get next ASCII character

 tst temp1 ;look for 0=stop byte

 breq mm2 ;done

 rcall LCDCHR ;show char on LCD? DOESN’T WORK!

 rcall AsciiToMorse ;convert char to morse

 rcall MorseOut ;and send it

 rjmp mm1 ;no, keep going

mm2: ret

Guess what? It doesn’t work. Going back to the original source code, LCDCHR does not
preserve its input register, temp1. We’ll need to save this value, then recall it after the routine
completes. I used PUSH and POP for this:

MorseMsg:

; call with Z pointing to message

; will output Morse

mm1: lpm temp1,Z+ ;get next ASCII character

 tst temp1 ;look for 0=stop byte

 breq mm2 ;done

 push temp1 ;save char

 rcall LCDCHR ;show char on LCD

 pop temp1 ;restore char

 rcall AsciiToMorse ;convert char to morse

 rcall MorseOut ;and send it

5 Memory Keyer

 rjmp mm1 ;no, keep going

mm2: ret

Now we can see the text on the LCD, but it only works if the LCD cursor is at a visible location.
In other words, letters can be sent ‘off the screen’ and be invisible unless we are carefully
controlling where the text is sent. Calling LCDCHR puts the character at the current cursor
location, but doesn’t guarantee that it will be visible! Time for some more modifications:

ResetLine2:

; used by MorseMsg to prep LCD line 2

 rcall ClearLine2 ;erase line2

 ldi temp1,$C0 ;set cursor to start of line

 rcall LCDCMD

 clr temp3 ;clear char counter

 ret

MorseMsg:

; call with Z pointing to message

; will output Morse and show it on LCD line 2

 rcall ResetLine2 ;prep line2 for display

mm1: lpm temp1,Z+ ;get next ASCII character

 tst temp1 ;look for 0=stop byte

 breq mm2 ;done

 push temp1 ;save char

 rcall LCDCHR ;show char on LCD

 pop temp1 ;restore char

 rcall AsciiToMorse ;convert char to morse

 rcall MorseOut ;and send it

 inc temp3 ;incr character counter

 cpi temp3,16 ;is line2 full=16 chars?

 breq MorseMsg ;yes, clear it & continue

 rjmp mm1 ;no, keep going

mm2: ret

SendMorse:

 ldi temp1,10 ;Show 'Sending Message'

 rcall DisplayLine1 ;on LCD line 1

 rcall MorseMsg ;send the message

 ldi temp1,0 ;restore LCD

 rcall ChangeMode ;to tuning mode

 ret

SendMorse1:

 ldi ZH,high(2*cwmem1) ;point to first CW msg

 ldi ZL,low(2*cwmem1)

 rcall SendMorse

 ret

Now we confine our text to the second line of the LCD display, and count characters using the

temp3 register. Once the line is full, the next character will erase the line and start back at the

beginning. You can do some fancy scrolling if you like, but this works and looks OK. The

modified code also restores our display after the message has finished. Try putting a call to

SendMorse1 in your initialization code, and it will play back to you on startup.

6 Memory Keyer

These messages are helpful only if we have a quick way to send them. I thought about putting

them in another ‘mode’, but it isn’t very convenient: holding down the encoder button for several

seconds to select a message is cumbersome and takes too long. We need a quicker method,

like the individual buttons found on the side of many keyers. There aren’t any extra button

inputs handy, but we do have our paddles and the encoder button. Each of them already has a

function. But what about combining them?

My idea for memory keying is to combine the button and paddles: push the button down, and

then hit a paddle key while the button is depressed. The left paddle is keyer memory #1 and the

right is memory #2. To do this we’ll need to check the button state in the paddle input routines.

If the button is down, do the memory keying; otherwise, send the dit/dah. Here is the revised

code for the paddledown routines:

LPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 sbis PinD,PD3 ;is encoder button down?

 rjmp SendMorse1 ;yes, so do message1

 sbis PinC,RPaddle ;are both paddles pressed?

 rjmp Iambic ;yes, so iambic mode

 rcall Dit ;no, so just send a dit

 ret

RPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 sbis PinD,PD3 ;is encoder button down?

 rjmp SendMorse2 ;yes, so do message2

 sbis PinC,LPaddle ;are both paddles pressed?

 rjmp Iambic ;yes, so iambic mode

 rcall Dah ;no, so just send a dah

 ret

That’s it. The added SBIS instructions check the button state, and cause a jump to the memory

keyer routines if the button is pressed.

73,

Bruce.

Final Code

Instructions on adding these routines to the source code are found in the iambic keyer article.

;***

;* W8BH - Iambic Keyer routines

;***

;

; Left paddle (dit) = Port C, bit 5

; Right paddle (dah) = Port C, bit 4

7 Memory Keyer

; Keyer output line = Port D, bit 6

.equ LPaddle = PC5

.equ RPaddle = PC4

.equ DahFlag = 1 ;0=dit, 1=dah

.equ KeyOut = PD6

CHECKKEY:

; Checks to see if either of the paddles have been pressed.

; Paddle inputs are active low

 lds temp2,flags ;get flags in register

 sbis PinC,LPaddle ;dit (left) paddle pressed?

 rcall LPaddleDown ;yes, so do it

 sbis PinC,RPaddle ;dah (right) paddle pressed?

 rcall RPaddleDown ;yes, so do it

 sts flags,temp2 ;save flags

 ret

LPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 sbis PinD,PD3 ;is encoder button down?

 rjmp SendMorse1 ;yes, so do message1

 sbis PinC,RPaddle ;are both paddles pressed?

 rjmp Iambic ;yes, so iambic mode

 rcall Dit ;no, so just send a dit

 ret

RPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 sbis PinD,PD3 ;is encoder button down?

 rjmp SendMorse2 ;yes, so do message2

 sbis PinC,LPaddle ;are both paddles pressed?

 rjmp Iambic ;yes, so iambic mode

 rcall Dah ;no, so just send a dah

 ret

IAMBIC:

; Come here if both paddles are pressed

 sbrc temp2,DahFlag ;was the last element a Dah?

 rjmp Dit ;yes, so do a dit now

 rjmp Dah ;no, so do a dah now

DIT:

 rcall KeyDown

 rcall DitWait ;key down for 1 dit

 rcall KeyUp

 rcall DitWait ;key up for 1 dit

 cbr temp2,1<<DahFlag ;remember dit sent

 ret

DAH:

 rcall KeyDown

 rcall DahWait ;key down for 1 dah

 rcall KeyUp

 rcall DitWait ;key up for 1 dit

 sbr temp2,1<<DahFlag ;remember dah sent

 ret

KEYDOWN:

 cbi PortD,KeyOut ;turn on output line

 cbi PortC,LED ;turn on LED

8 Memory Keyer

 ret

KEYUP:

 sbi PortD,KeyOut ;turn off output line

 sbi PortC,LED ;turn off LED

 ret

DITWAIT:

 ldi delay, 120 ;set speed at 10 WPM

 rcall wait ;and wait that long

 ret

DAHWAIT: ;wait for 3 dits

 rcall DitWait

 rcall DitWait

 rcall DitWait

 ret

MORSEOUT:

; call this routine with the encoded morse byte in temp1

 cpi temp1,$80 ;found stop bit yet:

 breq mo2 ;yes, so quit

 lsl temp1 ;no, get next bit into carry

 brcs mo1 ;is the bit a dit? (bit=1)

 rcall dah ;no, so send a dah

 rjmp morseout

mo1: rcall dit ;yes, so send a dit

 rjmp morseout

mo2: rcall ditwait ;end of char spacing

 rcall ditwait

 ret

CQTEST:

; sends a CQ

 ldi temp1,$58 ;binary 0101.1000 = 'C'

 rcall MorseOut

 ldi temp1,$28 ;binary 0010.1000 = 'Q'

 rcall MorseOut

 ret

ASCIITOMORSE:

; Call with an ASCII character in temp1

; This routine will convert it into a coded-morse character

; If input is an invalid character, output = $80 (stop bit)

 ldi ZH,high(2*mtable) ;point to morse table

 ldi ZL,low(2*mtable)

 cpi temp1,$20 ;is it a space character?

 brne am1 ;no

 rcall WordWait ;yes, so wait appropriate time

 rjmp am4

am1: cpi temp1,$2A ;ignore control chars

 brmi am3

 cpi temp1,$7A ;ignore graphic chars

 brpl am3

 cpi temp1,$60 ;is it an lower-case char?

 brmi am2 ;no

 andi temp1,$DF ;yes, convert to upper-case

am2: subi temp1,$2A ;start table at $2A='*'

 add ZL,temp1 ;add char offset to table pointer

 clr temp1 ;keep only the carry bit

 adc ZH,temp1 ;add carry, if any, to ZH

 lpm temp1,Z ;get character from table

9 Memory Keyer

 rjmp am4 ;done

am3: ldi temp1,$80 ;output stop-bit for invalid chars

am4: ret

CQTEST2:

 ldi temp1,'c' ;send a 'c'

 rcall AsciiToMorse

 rcall MorseOut

 ldi temp1,'q' ;send a 'q'

 rcall AsciiToMorse

 rcall MorseOut

 ret

RESETLINE2:

; used by MorseMsg to prep LCD line 2

 rcall ClearLine2 ;erase line2

 ldi temp1,$C0 ;set cursor to start of line

 rcall LCDCMD

 clr temp3 ;clear char counter

 ret

MORSEMSG:

; call with Z pointing to message

; will output Morse and show it on LCD line 2

 rcall ResetLine2 ;prep line2 for display

mm1: lpm temp1,Z+ ;get next ASCII character

 tst temp1 ;look for 0=stop byte

 breq mm2 ;done

 push temp1 ;save char

 rcall LCDCHR ;show char on LCD

 pop temp1 ;restore char

 rcall AsciiToMorse ;convert char to morse

 rcall MorseOut ;and send it

 inc temp3 ;incr character counter

 cpi temp3,16 ;is line2 full=16 chars?

 breq MorseMsg ;yes, clear it & continue

 rjmp mm1 ;no, keep going

mm2: ret

SENDMORSE:

 ldi temp1,10 ;Show 'Sending Message'

 rcall DisplayLine1 ;on LCD line 1

 rcall MorseMsg ;send the message

 ldi temp1,0 ;restore LCD

 rcall ChangeMode ;to tuning mode

 ret

SENDMORSE1:

 ldi ZH,high(2*cwmem1) ;point to first CW msg

 ldi ZL,low(2*cwmem1)

 rcall SendMorse

 ret

SENDMORSE2:

 ldi ZH,high(2*cwmem2) ;point to second CW msg

 ldi ZL,low(2*cwmem2)

 rcall SendMorse

 ret

;***

;* W8BH - END OF INSERTED CODE

;***

10 Memory Keyer

;The following table & keyer memories are placed at

;the end of your source code:

mtable:

;This table converts ASCII characters into their morse equivalent

;The ASCII character is listed as a comment above each code

;Read the code from left to right, with 1=dit and 0=dah

;An extra, silent '1' is added at the end as a stop-bit

; * (SK) + (AR) , - (BT)

.db 0b11101010, 0b10101100, 0b00110010, 0b01110100

; . / 0 1

.db 0b01010110, 0b01101100, 0b00000100, 0b10000100

; 2 3 4 5

.db 0b11000100, 0b11100100, 0b11110100, 0b11111100

; 6 7 8 9

.db 0b01111000, 0b00111100, 0b00011100, 0b00001100

; : ; < =

.db 0b00000000, 0b00000000, 0b00000000, 0b00000000

; > ? @ A

.db 0b00000000, 0b11001110, 0b10010110, 0b10100000

; B C D E

.db 0b01111000, 0b01011000, 0b01110000, 0b11000000

; F G H I

.db 0b11011000, 0b00110000, 0b11111000, 0b11100000

; J K L M

.db 0b10001000, 0b01010000, 0b10111000, 0b00100000

; N O P Q

.db 0b01100000, 0b00010000, 0b10011000, 0b00101000

; R S T U

.db 0b10110000, 0b11110000, 0b01000000, 0b11010000

; V W X Y

.db 0b11101000, 0b10010000, 0b01101000, 0b01001000

; Z [\]

.db 0b00110000, 0b00000000, 0b00000000, 0b00000000

cwmem1:

.db "CQ CQ CQ de W8BH W8BH W8BH K",0,0

cwmem2:

.db "TNX FER GUD QSO - 73 73 * de W8BH K",0

