
8-bit
Microcontroller

Application
Note

Rev. 0954B–AVR–05/02
AVR 300: Software TWI Master Interface

Features
• Uses No Interrupts
• Supports Normal and Fast Mode
• Supports Both 7-bit and 10-bit Addressing
• Supports the Entire AVR Microcontroller Family

Introduction
The need for a simple and cost effective inter-IC bus for use in consumer, telecommu-
nications and industrial electronics, led to the developing of the TWI bus. Today the
TWI bus is implemented in a large number of peripheral and microcontrollers, making
it a good choice in low speed applications.

The AVR microcontroller family does not have dedicated hardware for TWI operation,
but because of the flexible I/O and high processing speed, an efficient software TWI
single master interface, can easily be implemented.

Theory of Operation
The TWI bus is a Two-wire synchronous serial interface consisting of one data (SDA)
and one clock (SCL) line. By using open drain/collector outputs, the TWI bus supports
any fabrication process (CMOS, bipolar and more).

The TWI bus is a multi-master bus where one or more devices, capable of taking con-
trol of the bus, can be connected. When there is only one master connected to the
bus, this does not need to support handling of bus contentions and inter master
access (a master accessing another master). Only master devices can drive both the
SCL and SDA lines while a slave device is only allowed to issue data on the SDA line.

Figure 1. START and STOP Conditions

START
CONDITION

STOP
CONDITION

SCL

SDA
1



Data transfer is always initiated by a Bus Master device. A high to low transition on the
SDA line while SCL is high is defined to be a START condition (or a repeated start con-
dition). A START condition is always followed by the (unique) 7-bit slave address and
then by a data direction bit. The Slave device addressed now acknowledges to the Mas-
ter by holding SDA low for one clock cycle. If the Master does not receives any
acknowledge, the transfer is terminated. Depending of the data direction bit, the Master
or Slave now transmits 8-bit of data on the SDA line. The receiving device then acknowl-
edges the data. Multiple bytes can be transferred in one direction before a repeated
START or a STOP condition is issued by the Master. The transfer is terminated when
the Master issues a STOP condition. A STOP condition is defined by a low to high tran-
sition on the SDA line while the SCL is high.

If a Slave device cannot handle incoming data until it has performed some other func-
tion, it can hold SCL low to force the master into a Wait State.

Figure 2. Bit Transfer on the TWI Bus

Change of data on the SDA line is only allowed during the low period of SCL as shown
in Figure 2. This is a direct consequence of the definition of the START and STOP con-
ditions. A more detailed description and timing specifications, can be found in [1].

Transferring Data All transfer on the bus is byte sized. Each byte is followed by an acknowledge bit set by
the Receiver. The slave address byte contains both a 7-bit address and a read/write bit.

Figure 3. Byte Transfer Formats

SDA

SCL

DATA
VALID

CHANGE
ALLOWED

Sr P

FROM MASTER TO SLAVE

FROM SLAVE TO MASTER

S A ASlave Address R/W DATA DATA A/A P

S ASlave Address R/W DATA A DATA A P

Slave Address R/WS ASlave Address R/W DATA A/A A DATA A/A

"0"

"1"

Master Write

Master Read

Combined Format

S START CONDITION

P STOP CONDITION

A ACKNOWLEDGE (SDA LOW)

A NOT ACKNOWLEDGE (SDA HIGH)

REPEATED STARTSr

n BYTES

n BYTES

n BYTES n BYTES
2 AVR300
0954B–AVR–05/02



AVR300
Figure 3 shows the valid data transfer formats. In the combined format, multiple data
can be sent in any direction (to the same Slave device). A change in data direction is
done by using a repeated START condition. Note that a Master read operation must be
terminated by not acknowledging the last byte read.

Connection Both TWI lines (SDA and SCL) are bi-directional therefore outputs must be of an open-
drain or an open-collector type. Each line must be connected to the supply voltage via a
pull-up resistor. A line is then logic high when none of the connected devices drives the
line, and logic low if one or more is drives the line low.

Figure 4. Physical Connection to the TWI Bus

Figure 4 shows how to connect the AVR microcontroller to the TWI bus. The value of RP
depends on VDD and the bus capacitance (typically 4.7 k).

Implementation The only resources used by the TWI Master routines presented in this application, is the
two pins for SCL and SDA on port D. Since the TWI bus is synchronous, the duty cycle
and the period time to the Serial Clock Line (SCL) is not critical. Therefore it is not nec-
essary to “fine-tune” the routines which would cause to an increase of program size.

There are two types of delays used in this implementation: quarter period and half
period delays. For TWI in Normal mode (100 kHz), these delays must be tquarter > 2.5 µs
and thalf > 5.0 µs. For TWI in Fast mode (400 kHz) the parameters are tquarter > 0.6 µs
and thalf > 1.3 µs.

There is a large number of possible implementations of the delay loop. All the imple-
mentations depends on the MCU clock frequency. It is not possible to make a
generalized version which is efficient for all clock speeds.

SCLK IN

"0"

SCLK OUT

DATA IN

"0"

DATA OUT

RP RP

SCL SDA

PDx

PDy

AT90Sxxxx
(TWI Master)

SCL

SDA

TWI Slave(s)

VDD
3
0954B–AVR–05/02



The following steps show how to choose the most efficient implementation of the delays:

1. Calculate the required number of clock cycles both delays:

n = t * fosc; t = tquarter and thalf, fosc is MCU clock.

2. Use n to chose one of the following methods for both delays.

TWI Subroutines

“TWI_init” Initializes SCL and SDA lines. The SCLP and SDAP constants located top of the pro-
gram code, chooses the pin number on port D. It is possible to use any pins on any port
by changing the program code if required.

All the port D initialization can be put in this subroutine to reduce code size.

“TWI_start” Generate start condition and sends slave address. All data transfer must start with this
subroutine. When a transfer is done the “TWI_end” must be called. When the bus is free
(after “TWI”_end is called) all registers are free for other usage.

n Delay method

< 1 Remove all calls to the delay routine

1 < n < 2 Replace all calls to the delay routine with one “nop” instruction

2 < n < 3 Replace all calls to the delay routine with an “rjmp 1” instruction

2 < n < 7 The delay routine should consist of one “ret” instruction only

> 7 Use the following routine :
ldi TWIdelay, 1+ (n-7)/3

loop: dec TWIdelay
brne loop
ret

(this routine is used in the program code!)

Parameter Value

Code Size 3

Execution Cycles N/A

Register Usage • Low Registers
• High Registers
• Global Registers

:None
:3
:1

Register Input Internal Output

r16 “TWIdelay” – Delay Loop
Counter

r17 “TWIdata” – Transmit buffer

r18 “TWIadr” – Slave address and transfer
direction (global)
4 AVR300
0954B–AVR–05/02



AVR300
“TWI_rep_start” Generate repeated start condition and sends slave address. A repeated START can
only be given after a byte has been read or written.

“TWI_write” Writes data (one byte) to the TWI bus. This function is also used for sending the
address.

“TWI_get_ack” Get slave acknowledge response. The reason for separate this subroutine from the
“TWI_write” routine is to get a more readable program code.

Parameter Value

Code Size 5

Execution Cycles N/A

Register Usage • Low Registers
• High Registers
• Global Registers

:None
:3
:1

Register Input Internal Output

r16 “TWIdelay” – Delay Loop
Counter

r17 “TWIdata” – Transmit buffer

r18 “TWIadr” – Slave address and transfer
direction (global)

Parameter Value

Code Size 16

Execution Cycles N/A

Register Usage • Low Registers
• High Registers
• Global Registers

:None
:2
:None

Register Input Internal Output

r16 “TWIdelay” – Delay Loop Counter

r17 “TWIdata” – Data to be written

Parameter Value

Code Size 11

Execution Cycles N/A

Register Usage • Low Registers
• High Registers
• Global Registers

:None
:1
:None

Register Input Internal Output

r16 “TWIdelay” – Delay Loop Counter
5
0954B–AVR–05/02



Figure 5. “TWI_start”, “TWI_rep_start”, “TWI_write”, and “TWI_get_ack” Flow Chart

Figure 5 shows the flow chart for “TWI_start”, “TWI_rep_start”, “TWI_write”, and “TWI_get_ack”. These subroutines shares
program code to reduce size.

"TWI_start"

TWIadr = TWIdata

ZERO = "1"?

"TWI_rep_start"

Set SDA LOW

Delay thalf

Set SCL LOW
& SDA HIGH

"TWI_write"

Set SCL HIGH

Delay tquater

Delay tquater

Set CARRY = "1"

Left Rotate TWIdata left shift TWIdata

Set SCL LOW

No

CARRY = "1"?

Set SDA HIGH Set SDA LOW

Yes

No

Delay thalf

Set SCL HIGH

Delay thalf

set SCL LOW

Delay thalf

Set SCL HIGH

Delay thalf

SCL HIGH ?

Yes

No

Set CARRY = SDA

"TWI_get_ack"

Yes

Return
6 AVR300
0954B–AVR–05/02



AVR300
“TWI_read” Reads data (one byte) from the TWI bus.

“TWI_put_ack” Put an acknowledge bit depending on carry flag is set or not. Separating this subroutine
from the “TWI_read” routine is convenient for the user if a acknowledge is based on the
result of the read operation.

Parameter Value

Code Size 11

Execution Cycles N/A

Register Usage • Low Registers
• High Registers
• Global Registers

:None
:3
:1

Register Input Internal Output

r16 “TWIdelay” – Delay Loop Counter

r17 “TWIdata” – Received data

r19 “TWIstat” – Store acknowledge bit (global)

Parameter Value

Code Size 12

Execution Cycles N/A

Register Usage • Low Registers
• High Registers
• Global Registers

:None
:2
:1

Register Input Internal Output

r16 “TWIdelay” – Delay Loop Counter

r19 “TWIstat” – Acknowledge bit (global)
7
0954B–AVR–05/02



Figure 6. “TWI_read” and “TWI_put_ack” Flow Chart

Figure 6 shows the flow chart for “TWI_read” and “TWI_put_ack”. These subroutines
shares program code to reduce size.

“TWI_stop” Generate stop condition. When a transfer is done the “TWI_end” must be called. When
the bus is free (after “TWI”_end is called) all registers are free for use.

"TWI_read"

Set TWIdata = 0x01

Set SCL LOW

Delay thalf

Set SCL HIGH

Delay thalf

Set CARRY = SDA

Left rotate TWIdata

CARRY = "1" ?

No

Set SCL LOW

"TWI_put_ack"

Set SDA = i2cstat

Delay thalf

Set SCL HIGH

SCL HIGH ?

Yes

No

Delay thalf

Return

Parameter Value

Code Size 8

Execution Cycles N/A

Register Usage • Low Registers
• High Registers
• Global Registers

:None
:1
:None

Register Input Internal Output

r16 “TWIdelay” – Delay Loop Counter
8 AVR300
0954B–AVR–05/02



AVR300
Figure 7. “TWI_stop” Flow Chart

Figure 7 shows the flow chart for “TWI_stop”.

“TWI_do_transfer” The “TWI_do_transfer” routine is implemented for convenience only. It uses the direc-
tion bit from the last address byte send, to decide whether to call the “TWI_read” or the
“TWI_write” routine.

Tips and Warnings The main loop in the program shows an example of reading and writing data to a 256-
byte SRAM. This is a simple demonstration of how to use the TWI routines. Typically the
reading and writing of SRAM will be implemented as functions calls, but since there is a
large variety of slave implementations and ways of accessing them, the making this type
of function calls is left for the user.

Warning! Do not change the order of the TWI routines. Most routines expects to be fol-
lowed by a another specific TWI routine to work correctly.

Conclusion This application note shows how to implement a master TWI interface on any AVR
microcontroller device. This by using a minimum of resources. Since no interrupts are
used in the implementation, these are free for other applications. It is also possible to
use the TWI interface inside interrupts.

"TWI_stop"

Set SCL LOW
& SDA LOW

Delay thalf

Set SCL HIGH

Delay tquater

Set SDA HIGH

Delay thalf

Return
9
0954B–AVR–05/02



Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

0954B–AVR–05/02 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.


	Features
	Introduction
	Theory of Operation
	Transferring Data
	Connection
	Implementation
	TWI Subroutines
	“TWI_init”
	“TWI_start”
	“TWI_rep_start”
	“TWI_write”
	“TWI_get_ack”
	“TWI_read”
	“TWI_put_ack”
	“TWI_stop”
	“TWI_do_transfer”

	Tips and Warnings
	Conclusion

